http://iet.metastore.ingenta.com
1887

Optical MEMS accelerometer sensor relying on a micro-ring resonator and an elliptical disk

Optical MEMS accelerometer sensor relying on a micro-ring resonator and an elliptical disk

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Here, a novel optical micro-electro-mechanical systems (MEMS) accelerometer sensor based on a micro-ring resonator and an elliptical disk is proposed. The designed optical MEMS accelerometer is then analysed to obtain its functional characteristics. The proposed optical MEMS sensor presents an optical sensitivity of 0.0025 nm/g, a mechanical sensitivity of 1.56 nm/g, a linear measurement range of ±22 g, a first resonance frequency of 13.02 kHz, and a footprint of 34 μm × 50 μm. Furthermore, the achieved functional characteristics of the proposed accelerometer are compared to several recent contributions in the related field. According to this comparison study, the present optical MEMS accelerometer can be a suitable device for many applications ranging from consumer electronics to inertial measurement units.

References

    1. 1)
      • 1. Stojanović, V., Ram, R.J., Popović, M., et al: ‘Monolithic silicon-photonic platforms in state-of-the-art CMOS SOI processes [invited]’, Opt. Express, 2018, 26, (10), pp. 1310613121.
    2. 2)
      • 2. Orcutt, J.S., Moss, B., Sun, C., et al: ‘Open foundry platform for high-performance electronic-photonic integration’, Opt. Express, 2012, 20, (11), pp. 1222212232.
    3. 3)
      • 3. Bogaerts, W., Baets, R., Dumon, P., et al: ‘Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology’, J. Lightwave Technol., 2005, 23, (1), p. 401.
    4. 4)
      • 4. Bogaerts, W., De Heyn, P., Van Vaerenbergh, T., et al: ‘Silicon microring resonators’, Laser Photonics Rev., 2012, 6, (1), pp. 4773.
    5. 5)
      • 5. Khalil, K., Sabry, Y.M., Hassan, K., et al: ‘In-line optical MEMS phase modulator and application in ring laser frequency modulation’, IEEE J. Quantum Electron., 2016, 52, (8), pp. 18.
    6. 6)
      • 6. Azzam, S.I., Obayya, S.S.A.: ‘Ultra-compact resonant tunneling-based TE-pass and TM-pass polarizers for SOI platform’, Opt. Lett., 2015, 40, (6), pp. 10611064.
    7. 7)
      • 7. Xiong, Y., Xu, D., Schmid, J.H., et al: ‘High extinction ratio and broadband silicon Te-pass polarizer using subwavelength grating index engineering’, IEEE Photonics J., 2015, 7, (5), pp. 17.
    8. 8)
      • 8. Majumder, A., Shen, B., Polson, R., et al: ‘Ultra-compact polarization rotation in integrated silicon photonics using digital metamaterials’, Opt. Express, 2017, 25, (17), pp. 1972119731.
    9. 9)
      • 9. Wu, J.-W., Sarma, A.K.: ‘Ultrafast all-optical XOR logic gate based on a symmetrical Mach-Zehnder interferometer employing SOI waveguides’, Opt. Commun., 2010, 283, (14), pp. 29142917.
    10. 10)
      • 10. Sah, P., Das, B.K.: ‘Integrated optical rectangular-edge filter devices in SOI’, J. Lightwave Technol., 2017, 35, (2), pp. 128135.
    11. 11)
      • 11. Omran, H., Sabry, Y.M., Sadek, M., et al: ‘Deeply-etched optical MEMS tunable filter for swept laser source applications’, IEEE Photonics Technol. Lett., 2014, 26, (1), pp. 3739.
    12. 12)
      • 12. Crosnier, G., Sanchez, D., Bouchoule, S., et al: ‘Hybrid indium phosphide-on-silicon nanolaser diode’, Nat. Photonics, 2017, 11, (5), pp. 297300.
    13. 13)
      • 13. Zhao, X., Tsai, J., Cai, H., et al: ‘A nano-opto-mechanical pressure sensor via ring resonator’, Opt. Express, 2012, 20, (8), pp. 85358542.
    14. 14)
      • 14. Errando-Herranz, C., Niklaus, F., Stemme, G., et al: ‘Low-power microelectromechanically tunable silicon photonic ring resonator add-drop filter’, Opt. Lett., 2015, 40, (15), pp. 35563559.
    15. 15)
      • 15. Lipson, A., Yeatman, E.M.: ‘A 1-D photonic band gap tunable optical filter in (110) silicon’, J. Microelectromech. Syst., 2007, 16, (3), pp. 521527.
    16. 16)
      • 16. Tan, S.S., Liu, C.Y., Yeh, L.K., et al: ‘A new process for CMOS MEMS capacitive sensors with high sensitivity and thermal stability’, J. Micromech. Microeng., 2011, 21, (3), p. 035005.
    17. 17)
      • 17. Dong, X., Yang, S., Zhu, J., et al: ‘Method of measuring the mismatch of parasitic capacitance in MEMS accelerometer based on regulating electrostatic stiffness’, Micromachines. (Basel), 2018, 9, (3), p. 128.
    18. 18)
      • 18. Davies, E., George, D.S., Gower, M.C., et al: ‘MEMS fabry–pérot optical accelerometer employing mechanical amplification via a V-beam structure’, Sens. Actuators, A, 2014, 215, pp. 2229.
    19. 19)
      • 19. Lu, Q., Bai, J., Wang, K., et al: ‘Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer’, J. Microelectromech. Syst., 2017, 26, (4), pp. 859869.
    20. 20)
      • 20. Trigona, C., Ando, B., Baglio, S.: ‘Design, fabrication, and characterization of BESOI-accelerometer exploiting photonic bandgap materials’, IEEE Trans. Instrum. Meas., 2014, 63, (3), pp. 702710.
    21. 21)
      • 21. Sheikhaleh, A., Abedi, K., Jafari, K.: ‘An optical MEMS accelerometer based on a two-dimensional photonic crystal add-drop filter’, J. Lightwave Technol., 2017, 35, (14), pp. 30293034.
    22. 22)
      • 22. Krause, A.G., Winger, M., Blasius, T.D., et al: ‘A high-resolution microchip optomechanical accelerometer’, Nat. Photonics, 2012, 6, p.768.
    23. 23)
      • 23. Ahmadian, M., Jafari, K., Sharifi, M.J.: ‘Novel graphene-based optical MEMS accelerometer dependent on intensity modulation’, ETRI J., 2018, 40, (6), pp. 794801.
    24. 24)
      • 24. Sheikhaleh, A., Abedi, K., Jafari, K., et al: ‘Micro-optoelectromechanical systems accelerometer based on intensity modulation using a one-dimensional photonic crystal’, Appl. Opt., 2016, 55, (32), pp. 89938999.
    25. 25)
      • 25. Sheikhaleh, A., Abedi, K., Jafari, K.: ‘A proposal for an optical MEMS accelerometer relied on wavelength modulation with one dimensional photonic crystal’, J. Lightwave Technol., 2016, 34, (22), pp. 52445249.
    26. 26)
      • 26. Yang, Z., Peroulis, D.: ‘A 20–40 Ghz tunable MEMS bandpass filter with enhanced stability by gold-vanadium micro-corrugated diaphragms’. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, 2016, pp. 13.
    27. 27)
      • 27. Luo, G., Lee, C., Cheng, C., et al: ‘CMOS-MEMS Fabry-Perot optical interference device with tunable resonant cavity’. 2013 Transducers & Eurosensors XXVII: The 17th Int. Conf. on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII), Barcelona, 2013, pp. 26002603.
    28. 28)
      • 28. Hao, L., Gang, Z., Carley, L.R., et al: ‘A post-CMOS micromachined lateral accelerometer’, J. Microelectromech. Syst., 2002, 11, (3), pp. 188195.
    29. 29)
      • 29. Jafari, K.: ‘A parameter estimation approach based on binary measurements using maximum likelihood analysis - application to MEMS’, Int. J. Control, Autom. Syst., 2017, 15, (2), pp. 716721.
    30. 30)
      • 30. Jafari, K., Juillard, J., Roger, M.: ‘Convergence analysis of an online approach to parameter estimation problems based on binary observations’, Automatica, 2012, 48, (11), pp. 28372842.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2019.0029
Loading

Related content

content/journals/10.1049/iet-cds.2019.0029
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address