Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Bridgeless active rectifier for piezoelectric energy harvesting

The low power energy harvesters need efficient single-stage direct ac–dc conversion evading diode bridge rectifier. An active rectifier circuit is proposed for piezoelectric energy harvester working on the principle of the buck–boost converter. The active rectifier circuit provides dual output with a reduced number of components. The analysis of the active rectifier is carried out, and expression for the optimum duty cycle is derived for maximum power extraction. The active rectifier configuration is extended for connecting multiple piezoelectric energy harvesters, and maximum power extraction is achieved through time multiplexed switching of energy harvesters. Proposed active rectifier topology is validated through simulation and experimentation. The results demonstrate that the harvested power is improved by the factor of 1.4 and 3.2 for single input and multiple input configurations, respectively, as compared to the power harvested using dual output rectifier. The charging time of the supercapacitor is reduced by 17 min while charging through the single input configuration and 15 min while charging through the multiple input configuration of the proposed active rectifier circuit.

References

    1. 1)
      • 16. Saggini, S., Giro, S., Ongaro, F., et al: ‘Implementation of reactive and resistive load matching for optimal energy harvesting from piezoelectric generators’. IEEE 12th Work. Control Model. Power Electron. COMPEL 2010, Boulder, CO, USA, June 2010, pp. 16.
    2. 2)
      • 21. Moallem, M., Hsieh, C.-Y., Golnaraghi, F.: ‘Bridgeless converter with input resistance control for low-power energy harvesting applications’, IET Power Electron., 2015, 8, (5), pp. 822830.
    3. 3)
      • 17. Reinhilde, D., Sterken, T., Puers, R., et al: ‘Power processing circuits for piezoelectric vibration-based energy harvesters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41704177.
    4. 4)
      • 1. Sodano, H.A., Inman, D.J., Park, G.: ‘A review of power harvesting from vibration using piezoelectric materials’, Shock Vib. Dig., 2004, 36, (3), pp. 197205.
    5. 5)
      • 11. Wu, W.J., Wickenheiser, A.M., Reissman, T., et al: ‘Modeling and experimental verification of synchronized discharging techniques for boosting power harvesting from piezoelectric transducers’, Smart Mater. Struct., 2009, 18, (5), p. 055012 (1–14).
    6. 6)
      • 25. Du, S., Jia, Y., Seshia, A.A.: ‘An efficient inductorless dynamically configured interface circuit for piezoelectric vibration energy harvesting’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 35953609.
    7. 7)
      • 4. Wang, Q., Wu, N.: ‘Optimal design of a piezoelectric coupled beam for power harvesting’, Smart Mater. Struct., 2012, 21, (8), p. 085013 (1–9).
    8. 8)
      • 12. Szarka, G.D., Stark, B.H., Burrow, S.G.: ‘Review of power conditioning for kinetic energy harvesting systems’, IEEE Trans. Power Electron., 2012, 27, (2), pp. 803815.
    9. 9)
      • 14. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck–boost converter for sensorless power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    10. 10)
      • 27. Xia, H., Chen, R.: ‘Design and analysis of a scalable harvesting interface for multi-source piezoelectric energy harvesting’, Sens. Actuators A, 2014, 218, pp. 3340.
    11. 11)
      • 10. Guyomar, D., Badel, A., Lefeuvre, E., et al: ‘Toward energy harvesting using active materials and conversion improvement by nonlinear processing’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52, (4), pp. 584594.
    12. 12)
      • 5. Usharani, R., Uma, G., Umapathy, M., et al: ‘A new broadband energy harvester using propped cantilever beam with variable overhang’, Smart Struct. Syst., 2017, 19, (5), pp. 567576.
    13. 13)
      • 20. Dwari, S., Parsa, L.: ‘An efficient AC–DC step-up converter for low-voltage energy harvesting’, IEEE Trans. Power Electron., 2010, 25, (8), pp. 21882199.
    14. 14)
      • 2. Park, J., Lee, S., Kwak, B.M.: ‘Design optimization of piezoelectric energy harvester subject to tip excitation’, J. Mech. Sci. Technol., 2012, 26, (1), pp. 137143.
    15. 15)
      • 13. Ottman, G.K., Hofmann, H.F., Lesieutre, G.A.: ‘Optimized piezoelectric energy harvesting circuit using step-down converter in discontinuous conduction mode’, IEEE Trans. Power Electron., 2003, 18, (2), pp. 696703.
    16. 16)
      • 3. Raju, S.S., Umapathy, M., Uma, G.: ‘Design and analysis of high output piezoelectric energy harvester using non uniform beam’, Mech. Adv. Mater. Struct., 2018, 26, pp. 110.
    17. 17)
      • 8. D'Hulst, R., Sterken, T., Puers, R., et al: ‘Power processing circuits for piezoelectric vibration-based energy harvesters’, IEEE Trans. Ind. Electron., 2010, 57, (12), pp. 41704177.
    18. 18)
      • 6. Cammarano, A., Burrow, S.G., Barton, D.A.W., et al: ‘Tuning a resonant energy harvester using a generalized electrical load’, Smart Mater. Struct., 2010, 19, (5), p. 055003 (1–7).
    19. 19)
      • 24. Kwon, D., Rincón-Mora, G.A.: ‘A rectifier-free piezoelectric energy harvester circuit’. Proc. – IEEE Int. Symp. Circuits Syst., Taipei, Taiwan, May 2009, pp. 10851088.
    20. 20)
      • 9. Ramadass, Y.K., Chandrakasan, A.P.: ‘An efficient piezoelectric energy harvesting interface circuit using a bias-flip rectifier and shared inductor’, IEEE J. Solid-State Circuits, 2010, 45, (1), pp. 189204.
    21. 21)
      • 29. https://www.sparklerceramics.com/.
    22. 22)
      • 7. Moon, K., Choe, J., Kim, H., et al: ‘A method of broadening the bandwidth by tuning the proof mass in a piezoelectric energy harvesting cantilever’, Sens. Actuators A, 2018, 276, pp. 1725.
    23. 23)
      • 28. Kizu, Y., Koizumi, H.: ‘A single-input dual-output rectifier for piezoelectric energy harvesting’. Proc. IECON 2017 – 43rd Annu. Conf. IEEE Ind. Electron. Soc., 2017, Beijing, China, January 2017, pp. 709714.
    24. 24)
      • 18. Dayal, R., Dwari, S., Parsa, L.: ‘Design and implementation of a direct ACDC boost converter for low-voltage energy harvesting’, IEEE Trans. Ind. Electron., 2011, 58, (6), pp. 23872396.
    25. 25)
      • 22. Wang, H., Tang, Y., Khaligh, A.: ‘A bridgeless boost rectifier for low-voltage’, IEEE Trans. Power Electron, 2013, 28, (11), pp. 52065214.
    26. 26)
      • 15. Kong, N., Ha, D.S., Erturk, A., et al: ‘Resistive impedance matching circuit for piezoelectric energy harvesting’, J. Intell. Mater. Syst. Struct., 2010, 21, (13), pp. 12931302.
    27. 27)
      • 19. Mitcheson, P.D., Green, T.C., Yeatman, E.M.: ‘Power processing circuits for electromagnetic, electrostatic and piezoelectric inertial energy scavengers’, Microsyst. Technol., 2007, 13, (11–12), pp. 16291635.
    28. 28)
      • 26. Raghavendran, S., Umapathy, M., Karlmarx, L. R.: ‘Supercapacitor charging from piezoelectric energy harvesters using multi-input buck–boost converter’,IET Circuits Devices Syst., 2018, 12, (6), pp. 746752.
    29. 29)
      • 23. Yu, L., Wang, H., Khaligh, A.: ‘A discontinuous conduction mode single-stage step-up rectifier for low-voltage energy harvesting applications’, IEEE Trans. Power Electron., 2017, 32, (8), pp. 61616169.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5576
Loading

Related content

content/journals/10.1049/iet-cds.2018.5576
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address