Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Integrated power converter design for bioturbation resilience in multi-anode microbial fuel cells

Microbial fuel cells (MFCs) are an important renewable energy source for underwater sensors. However, bioturbation problems cause short circuits in MFCs. Using distributed multiple anodes can effectively solve this problem. This paper presents a new power converter design that automatically detects the impaired anodes and disconnects them from the rest of the system for better energy efficiency and robustness. The evaluation was made by using 90 nm CMOS technology. The proposed power converter provides 42% more end-to-end efficiency than conventional design under the worst-case scenario.

References

    1. 1)
      • 5. Donovan, C., Dewan, A., Heo, D., et al: ‘Batteryless, wireless sensor powered by a sediment microbial fuel cell’, Environ. Sci. Technol., 2008, 42, (22), pp. 85918596.
    2. 2)
      • 30. Palumbo, G., Pappalardo, D., Gaibotti, M.: ‘Charge-pump circuits: power-consumption optimization’, IEEE Trans. Circuits Syst. I, Fundam. Theory Appl., 2002, 49, (11), pp. 15351542.
    3. 3)
      • 26. Doms, I., Merken, P., Hoof, C.V., et al: ‘Capacitive power management circuit for micropower thermoelectric generators with a 1.4 µ a controller’, IEEE J. Solid-State Circuits, 2009, 44, (10), pp. 28242833.
    4. 4)
      • 14. Dai, J., Li, X., Li, B., et al: ‘Design and modeling of an underwater energy harvesting system’. Int. Symp. on Circuits and Systems (ISCAS), Rio de Janeiro, Brazil, 2011, pp. 2226.
    5. 5)
      • 3. Proakis, J.G., Sozer, E.M., Rice, J.A., et al: ‘Shallow water acoustic networks’, IEEE Commun. Mag., 2001, 39, (11), pp. 114119.
    6. 6)
      • 13. Khaled, F., Ondel, O., Allard, B.: ‘Optimal energy harvesting from serially connected microbial fuel cells’, IEEE Trans. Ind. Electron., 2015, 62, (6), pp. 35083515.
    7. 7)
      • 12. Karra, U., Muto, E., Umaz, R., et al: ‘Performance evaluation of activated carbon-based electrodes with novel power management system for long-term benthic microbial fuel cells’, Int. J. Hydrog. Energy, 2014, 39, (36), pp. 2184721856.
    8. 8)
      • 24. Chen, P.H., Ishida, K., Zhang, X., et al: ‘A 120-mv input, fully integrated dual-mode charge pump in 65-nm cmos for thermoelectric energy harvester’. 17th Asia and South Pacific Design Automation Conf., Sydney, Australia, 2012, pp. 469470.
    9. 9)
      • 7. Yang, F., Zhang, D., Shimotori, T., et al: ‘Study of transformer-based power management system and its performance optimization for microbial fuel cells’, J. Power Sources, 2012, 205, pp. 8692.
    10. 10)
      • 29. Tanzawa, T., Tanaka, T.: ‘A dynamic analysis of the Dickson charge pump circuit’, IEEE J. Solid-State Circuits, 1997, 32, (8), pp. 12311240.
    11. 11)
      • 33. Huang, G., Umaz, R., Karra, U., et al: ‘A biomass-based marine sediment energy harvesting system’. Int. Symp. on Low Power Electronics and Design (ISLPED), Beijing, China, 2013, pp. 359364.
    12. 12)
      • 23. Kadirvel, K., Ramadass, Y., Lyles, U., et al: ‘A 330na energy-harvesting charger with battery management for solar and thermoelectric energy harvesting’. 2012 IEEE Int. Solid-State Circuits Conf., 2012, pp. 106108.
    13. 13)
      • 16. Ewing, T., Ha, P.T., Babauta, J.T., et al: ‘Scale-up of sediment microbial fuel cells’, J. Power Sources, 2014, 272, pp. 311319.
    14. 14)
      • 10. Wu, P.K., Biffinger, J.C., Fitzgerald, L.A., et al: ‘A low power dc/dc booster circuit designed for microbial fuel cells’, Process Biochem., 2012, 47, (11), pp. 16201626.
    15. 15)
      • 22. Chen, P.H., Ishida, K., Zhang, X., et al: ‘0.18-v input charge pump with forward body biasing in startup circuit using 65 nm CMOS’. IEEE Custom Integrated Circuits Conf. 2010, San Francisco, California, USA, 2010, pp. 14.
    16. 16)
      • 27. Weng, P.S., Tang, H.Y., Ku, P.C., et al: ‘50 mv-input batteryless boost converter for thermal energy harvesting’, IEEE J. Solid-State Circuits, 2013, 48, (4), pp. 10311041.
    17. 17)
      • 25. Shih, Y.C., Otis, B.P.: ‘An inductorless DC-DC converter for energy harvesting with a 1.2-µw bandgap-referenced output controller’, IEEE Trans. Circuits Syst. II, Express Briefs, 2011, 58, (12), pp. 832836.
    18. 18)
      • 17. Logan, B.: ‘Microbial fuel cells’ (John Wiley & Sons, Inc., New Jersey, USA).
    19. 19)
      • 28. Che, J., Zhang, C., Liu, Z., et al: ‘Ultra-low-voltage low-power charge pump for solar energy harvesting systems’. 2009 Int. Conf. on Communications, Circuits and Systems, Milpitas, California, USA, 2009, pp. 674677.
    20. 20)
      • 8. Umaz, R.: ‘Design of the power management system for marine sediment microbial fuel cell’ (University of Connecticut, Storrs, Connecticut, USA, 2013).
    21. 21)
      • 36. Umaz, R., Wang, L.: ‘An energy combiner design for multiple microbial energy harvesting sources’. Proc. of the on Great Lakes Symp. on VLSI, Banff, Alberta, Canada, 2017, pp. 443446.
    22. 22)
      • 15. Zhang, F., Tian, L., He, Z.: ‘Powering a wireless temperature sensor using sediment microbial fuel cells with vertical arrangement of electrodes’, J. Power Sources, 2011, 196, (22), pp. 95689573.
    23. 23)
      • 4. Degrenne, N., Buret, F., Morel, F., et al: ‘Self-starting DC:DC boost converter for low-power and low- voltage microbial electric generators’. 2011 IEEE Energy Conversion Congress and Exposition, Phoenix, Arizona, USA, 2011, pp. 889896.
    24. 24)
      • 32. Carlson, E.J., Strunz, K., Otis, B.P.: ‘A 20 mv input boost converter with efficient digital control for thermoelectric energy harvesting’, IEEE J. Solid-State Circuits, 2010, 45, (4), pp. 741750.
    25. 25)
      • 34. Vita, G.D., Iannaccone, G.: ‘A sub-1-v, 10 ppm/circc, nanopower voltage reference generator’, IEEE J. Solid-State Circuits, 2007, 42, (7), pp. 15361542.
    26. 26)
      • 2. Heidemann, J., Ye, W., Wills, J., et al: ‘Research challenges and applications for underwater sensor networking’. IEEE Wireless Communications and Networking Conf., 2006 (WCNC 2006), Las Vegas, Nevada, USA, 2006, vol. 1, pp. 228235.
    27. 27)
      • 6. Meehan, A., Gao, H., Lewandowski, Z.: ‘Energy harvesting with microbial fuel cell and power management system’, IEEE Trans. Power Electron., 2011, 26, (1), pp. 176181.
    28. 28)
      • 18. Karra, U., Huang, G., Umaz, R., et al: ‘Stability characterization and modeling of robust distributed benthic microbial fuel cell (DBMFC) system’, Bioresour. Technol., 2013, 144, pp. 477484.
    29. 29)
      • 35. Carreon Bautista, S., Erbay, C., Han, A., et al: ‘Power management system with integrated maximum power extraction algorithm for microbial fuel cells’, IEEE Trans. Energy Convers., 2015, 30, (1), pp. 262272.
    30. 30)
      • 11. Donovan, C., Dewan, A., Peng, H., et al: ‘Power management system for a 2.5w remote sensor powered by a sediment microbial fuel cell’, J. Power Sources, 2011, 196, (3), pp. 11711177.
    31. 31)
      • 20. Lee, I., Kim, G., Bang, S., et al: ‘System-on-mud: ultra-low power oceanic sensing platform powered by small-scale benthic microbial fuel cells’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2015, 62, (4), pp. 11261135.
    32. 32)
      • 19. Umaz, R., Garrett, C., Qian, F., et al: ‘A power management system for multianode benthic microbial fuel cells’, IEEE Trans. Power Electron., 2017, 32, (5), pp. 35623570.
    33. 33)
      • 31. Damaschke, J.M.: ‘Design of a low-input-voltage converter for thermoelectric generator’, IEEE Trans. Ind. Appl., 1997, 33, (5), pp. 12031207.
    34. 34)
      • 9. Park, J.D., Ren, Z.: ‘Hysteresis-controller-based energy harvesting scheme for microbial fuel cells with parallel operation capability’, IEEE Trans. Energy Convers., 2012, 27, (3), pp. 715724.
    35. 35)
      • 1. Huang, G., Umaz, R., Karra, U., et al: ‘A power management integrated system for biomass-based marine sediment energy harvesting’, Int. J. High Speed Electron. Syst., 2014, 23, p. 1450012 (120).
    36. 36)
      • 21. Tang, N., Hong, W., Ewing, T., et al: ‘A self-sustainable power management system for reliable power scaling up of sediment microbial fuel cells’, IEEE Trans. Power Electron., 2015, 30, (9), pp. 46264632.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5566
Loading

Related content

content/journals/10.1049/iet-cds.2018.5566
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address