Your browser does not support JavaScript!

access icon free Low-power data encoding/decoding for energy-efficient static random access memory design

This study presents a new energy-efficient design for static random access memory (SRAM) using a low-power input data encoding and output data decoding stages. A data bit reordering algorithm is applied to the input data to increase the number of 0s that are going to be written into the SRAM array. Using SRAM cells which are more energy-efficient in writing a ‘0’ than a ‘1’ benefits from this, resulting in a reduction in the total power and energy consumptions of the whole memory. The input data encoding is performed using a simple circuit, which is built of multiplexers and inverters. After the read operation, data will be returned back to its initial form using a low-power data decoding circuit. Simulation results in an industrial and a predictive CMOS technology show that the proposed design for SRAM reduces the energy consumption of read and write operations considerably for some standard test images as input data to the memory. For instance, in writing pixels of Lenna test image into this SRAM and reading them back, 15 and 20% savings are observed for the energy consumption of write and read operations, respectively, compared with the normal write and read operations in standard SRAMs.


    1. 1)
      • 13. Chang, M.-F., Chang, S.-W., Chou, P.-W., et al: ‘A 130 mv SRAM with expanded write and read margins for subthreshold applications’, IEEE J. Solid-State Circuits, 2011, 46, (2), pp. 520529.
    2. 2)
      • 18. Chang, I.-J., Kim, J.-J., Park, S.P., et al: ‘A 32 kb 10T sub-threshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS’, IEEE J. Solid-State Circuits, 2009, 44, (2), pp. 650658.
    3. 3)
      • 24. Pasandi, G., Mehrabi, K., Fakhraie, S.M.: ‘A new low-power SRAM block suitable for applications with normal data distribution’. 23rd Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2015, pp. 13161321.
    4. 4)
      • 11. Shafaei, A., Chen, S., Wang, Y., et al: ‘A cross-layer framework for designing and optimizing deeply-scaled FinFET-based SRAM cells under process variations’. 20th Asia and South Pacific Design Automation Conf., Chiba, Japan, 2015, pp. 7580.
    5. 5)
      • 4. Pable, S., Hasan, M.: ‘Ultra-low-power signaling challenges for subthreshold global interconnects’, VLSI J. Integr., 2012, 45, (2), pp. 186196.
    6. 6)
      • 19. Shafaei, A., Afzali-Kusha, H., Pedram, M.: ‘Minimizing the energy-delay product of SRAM arrays using a device-circuit-architecture co-optimization framework’. 2016 53nd ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin, TX, USA, 2016, pp. 16.
    7. 7)
      • 27. Ingerly, D., Agrawal, A., Ascazubi, R., et al: ‘Low-k interconnect stack with metal–insulator–metal capacitors for 22 nm high volume manufacturing’. 2012 IEEE Int. Interconnect Technology Conf. (IITC), San Jose, CA, USA, 2012, pp. 13.
    8. 8)
      • 20. Fujiwara, H., Nii, K., Noguchi, H., et al: ‘Novel video memory reduces 45% of bitline power using majority logic and data-bit reordering’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2008, 16, (6), pp. 620627.
    9. 9)
      • 17. Wang, L., Shafaei, A., Chen, S., et al: ‘10 nm gatelength junctionless gate-all-around (JL-GAA) FETs based 8T SRAM design under process variation using a cross-layer simulation’. 2015 IEEE SOI-3D-Subthreshold Microelectronics Technology Unified Conf. (S3S), Rohnert Park, CA, USA, 2015, pp. 12.
    10. 10)
      • 10. Ahmad, S., Alam, N., Hasan, M.: ‘Robust TFET SRAM cell for ultra-low power the applications’, AEU-Int. J. Electron. Commun., 2018, 89, pp. 7076.
    11. 11)
      • 6. Carey, S.J., Barr, D.R.W., Dudek, P.: ‘Demonstration of a low power image processing system using a SCAMP3 vision chip’. Int. Conf. on Distributed Smart Cameras, Ghent, Belgium, 2011, pp. 12.
    12. 12)
      • 9. Alouani, I., Elsharkasy, W.M., Eltawil, A.M., et al: ‘As8-static random access memory (SRAM): asymmetric SRAM architecture for soft error hardening enhancement’, IET Circuits Devices Syst., 2017, 11, (1), pp. 8994.
    13. 13)
      • 14. Zhai, B., Hanson, S., Blaauw, D., et al: ‘A variation-tolerant sub-200 mv 6-T subthreshold SRAM’, IEEE J. Solid-State Circuits, 2008, 43, (10), pp. 23382348.
    14. 14)
      • 15. Pasandi, G., Qasemi, E., Fakhraie, S.M.: ‘A new low-leakage t-gate based 8T SRAM cell with improved write-ability in 90 nm CMOS technology’. 22nd Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, May 2014.
    15. 15)
      • 16. Saeidi, R., Sharifkhani, M., Hajsadeghi, K.: ‘A subthreshold symmetric SRAM cell with high read stability’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (1), pp. 2630.
    16. 16)
      • 7. Pixelplus: ‘ImageARM processor’, 2008. Available at
    17. 17)
      • 26. Chang, L., Nakamura, Y., Montoye, R.K., et al: ‘A 5.3 GHZ 8T-SRAM with operation down to 0.41v in 65 nm CMOS’. IEEE Symp. on VLSI Circuits, Kyoto, Japan, 2007, pp. 252253.
    18. 18)
      • 23. Pasandi, G., Fakhraie, S.M.: ‘An 8T low-voltage and low-leakage half-selection disturb-free SRAM using bulk-CMOS and FinFETs’, IEEE Trans. Electron Devices, 2014, 61, (7), pp. 23572363.
    19. 19)
      • 22. Chang, I.J., Mohapatra, D., Roy, K.: ‘A priority-based 6T/8T hybrid SRAM architecture for aggressive voltage scaling in video applications’, IEEE Trans. Circuits Syst. Video Technol., 2011, 21, (2), pp. 101112.
    20. 20)
      • 5. Turcza, P., Duplaga, M.: ‘Hardware-efficient low-power image processing system for wireless capsule endoscopy’, IEEE J. Biomed. Healthc. Inf., 2013, 17, (6), pp. 10461056.
    21. 21)
      • 8. Pasandi, G., Pedram, M.: ‘Internal write-back and read-before-write schemes to eliminate the disturbance to the half-selected cells in SRAMs’, IET Circuits Devices Syst., 2018, 12, (4), pp. 460466.
    22. 22)
      • 1. Asada, Y.: ‘Low-power technology for image-processing LSIs’, Fujitsu Sci. Tech. J., 2013, 49, (1), pp. 117123.
    23. 23)
      • 21. Sinangil, M.E., Chandrakasan, A.P.: ‘Application-specific SRAM design using output prediction to reduce bit-line switching activity and statistically gated sense amplifiers for up to 1.9 lower energy/access’, IEEE J. Solid-State Circuits, 2014, 49, (1), pp. 107117.
    24. 24)
      • 25. A.S. University: ‘Predictive technology model (PTM)’, 2013. Available at
    25. 25)
      • 2. Chang, I.J., Park, J., Kang, K., et al: ‘Fast and accurate estimation of SRAM read and hold failure probability using critical point sampling’, IET Circuits Devices Syst., 2010, 4, (6), pp. 469478.
    26. 26)
      • 3. Ramesh, V., Dasgupta, S., Agarwal, R.: ‘Comparison of nano-scale complementary metal-oxide semiconductor and 3T–4T double gate fin-shaped field-effect transistors for robust and energy-efficient subthreshold logic’, IET Circuits Devices Syst., 2010, 4, (6), pp. 548560.
    27. 27)
      • 12. Pasandi, G., Fakhraie, S.M.: ‘A 256-kb 9T near-threshold SRAM with 1k cells per bitline and enhanced write and read operations’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (11), pp. 24382446.

Related content

This is a required field
Please enter a valid email address