Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Design and development of an Internet-of-Things enabled wearable ExG measuring system with a novel signal processing algorithm for electrocardiogram

In this article, the design and development aspects of a compact bio-potential measuring system, named ExGSense, is presented. Two versions of the prototype have been developed; first one can measure 3 + 1 V leads in time-multiplexed fashion, while the other can measure 3 + 1 V leads simultaneously. This article also presents an efficient algorithm for filtering electrocardiogram signals which is required to attenuate the effect of motion artefacts which are inevitable in wearable systems. Further, a user-friendly interface for PC and smartphone has also been developed. By the virtue of an ultra-low noise instrumentation amplifier and the programmability of gain and bandwidth of the bio-signal measuring system, a number of other bio-potential signals like EMG, EOG and EEG have been successfully recorded using disposable, off-the-shelf wet Ag/AgCl electrodes.

References

    1. 1)
      • 11. Pan, J., Tompkins, W.J.: ‘A real-time QRS detection algorithm’, IEEE Trans. Biomed. Eng., 1985, BME-32, (3), pp. 230236.
    2. 2)
      • 13. Shamim, W., Yousufuddin, M., Cicoria, M., et al: ‘Incremental changes in QRS duration in serial ECGs over time identify high risk elderly patients with heart failure’, Heart, 2002, 88, (1), pp. 4751.
    3. 3)
      • 16. ‘Python-for-Android project’. Available at https://github.com/kivy/buildozer, [Online; accessed 15-May-2016].
    4. 4)
      • 19. Rieger, R., Rif'an, M.: ‘Integrated ExG, vibration and temperature measurement front-end for wearable sensing’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2018, 65, (8), pp. 24222430.
    5. 5)
      • 7. Xu, J.: ‘Real-time eye tracking for the assessment of driver fatigue’, IET Healthc. Technol. Lett., 2018, 5, pp. 5458.
    6. 6)
      • 6. Abbasi-Kesbi, R.: ‘Cardiorespiratory system monitoring using a developed acoustic sensor’, IET Healthc. Technol. Lett., 2018, 5, pp. 712.
    7. 7)
      • 4. Yokus, M.A., Jur, J.S.: ‘Fabric-based wearable dry electrodes for body surface biopotential recording’, IEEE Trans. Biomed. Eng., 2016, 63, (2), pp. 423430.
    8. 8)
      • 2. Teng, S.-L., Rieger, R., Lin, Y.-B.: ‘Programmable ExG biopotential front-end IC for wearable applications’, IEEE Trans. Biomed. Circuits Syst., 2014, 8, (4), pp. 543551.
    9. 9)
      • 10. Pandya, U.T., Desai, U.B.: ‘A novel algorithm for bluetooth ECG’, IEEE Trans. Biomed. Eng., 2012, 59, (11), pp. 31483154.
    10. 10)
      • 8. Das, D.M., Srivastava, A., Ananthapadmanabhan, J., et al: ‘A novel low-noise fully differential CMOS instrumentation amplifier with 1.88 noise efficiency factor for biomedical and sensor applications’, Microelectron. J., 2016, 53, pp. 3544.
    11. 11)
      • 5. Biagetti, G., Crippa, P., Falaschetti, L., et al: ‘Wireless surface electromyograph and electrocardiograph system on 802.15.4’, IEEE Trans. Consum. Electron., 2016, 62, (3), pp. 258266.
    12. 12)
      • 18. Kim, H., Kim, S., Helleputte, N.V., et al: ‘A configurable and low-power mixed signal SoC for portable ECG monitoring applications’, IEEE Trans. Biomed. Circuits Syst., 2014, 8, (2), pp. 257267.
    13. 13)
      • 14. Moody, G.B., Mark, R.G.: ‘The impact of the MIT-BIH arrhythmia database’, IEEE Eng. Med. Biol. Mag., 2001, 20, (3), pp. 4550.
    14. 14)
      • 3. Van Helleputte, N., Konijnenburg, M., Pettine, J., et al: ‘A 345 μW multi-sensor biomedical SoC with bio-impedance, 3-channel ECG, motion artifact reduction, and integrated DSP’, IEEE J. Solid-State Circuits, 2015, 50, (1), pp. 230244.
    15. 15)
      • 1. Webster, J.G.: ‘Medical instru. – application and design’ (Wiley, India, 2009, 3rd edn.).
    16. 16)
      • 15. ‘Buildozer documentation’. Available at http://buildozer.readthedocs.io/en/latest/quickstart.html, [Online; accessed 15-May-2016].
    17. 17)
      • 12. Karlen, W., Ansermino, J.M., Dumont, G.: ‘Adaptive pulse segmentation and artifact detection in photoplethysmography for mobile applications’. 2012 Annual Int. Conf. of the IEEE Engineering in Medicine and Biology Society, San Diego, California, USA, Aug 2012.
    18. 18)
      • 9. Afonso, V.X.: ‘Biomedical digital signal processing’ (Prentice-Hall, Englewood Cliffs, NJ, 1993).
    19. 19)
      • 17. ‘Datasheet of Cardiart 108 T – Digi from BPL, India [Online]’. Available at http://bplmedicaltechnologies.com/wp-content/uploads/CARDIART-108TDIGI.pdf.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5498
Loading

Related content

content/journals/10.1049/iet-cds.2018.5498
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address