http://iet.metastore.ingenta.com
1887

Design and development of memristor-based RRAM

Design and development of memristor-based RRAM

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A power- and variability-aware non-volatile resistive random access memory (RRAM) cell is presented. Non-volatility is achieved due to the use of a memristor as a memory element, which when integrated with a carbon nanotube field-effect transistor (CNFET) helps achieve tremendous robustness against process variation. The half-select issue, inherent in the 2T2M RRAM cell (state-of-the-art design based on the memristor) have been resolved and its circuit parameters have been compared with those of the proposed cell. Also, the proposed cell has been compared with the standard 6T SRAM (S6T) cell. The proposed cell shows 1.6×/4.08× narrower read delay/write delay variability compared with 2T2M. 5CNFET2M also shows 1.8× narrower read delay variability than that of S6T. Furthermore, the proposed cell shows 6.9× shorter write delay in comparison with the 2T2M RRAM cell. 5CNFET2M consumes 106×/1.34× lower power during hold mode compared with the conventional 6T static random access memory/2T2M RRAM cell. Furthermore, the proposed cell also shows improvement in hold power variability compared with both the cells. All the simulated data, presented here are at the nominal supply voltage of 1 V. These improvements are gained at the expense of slightly longer read time compared with 2T2M/S6T and 31.3× longer write delay compared with S6T.

References

    1. 1)
      • 1. Chua, L.: ‘Memristor – the missing circuit element’, IEEE Trans. Circuit Theory, 1971, 18, (5), pp. 507519.
    2. 2)
      • 2. Sakode, V., Lombardi, F., Han, J.: ‘Cell design and comparative evaluation of a novel 1T memristor-based memory’, IEEE/ACM Int. Symp. Nanoscale Archit., Amsterdam, Netherlands, 2012, pp. 152159.
    3. 3)
      • 3. Islam, A., Hassan, M.: ‘Variability analysis of 6 and 7T SRAM cell in Sub-45Nm technology’, IIUM Eng. J., 2011, 12, (1), pp. 1330.
    4. 4)
      • 4. Wang, L., Shen, Y., Yin, Q., et al: ‘Adaptive synchronization of fractional-order memristor-based neural networks with multiple time-varying delays’, IEEE Trans. Neural Netw. Learn. Syst., 2015, 26, (9), pp. 20332042.
    5. 5)
      • 5. Zhang, Y., Wang, X., Friedman, E.G.: ‘Memristor-based circuit design for multilayer neural networks’, IEEE Trans. Circuits Syst. I Regul. Pap., 2018, 65, (2), pp. 677686.
    6. 6)
      • 6. Pal, S., Gupta, V., Islam, A.: ‘Variation resilient low-power memristor-based synchronous flip–flops: design and analysis’, Microsyst. Technol., 2018, pp. 114, doi: 10.1007/s00542-018-4044-6.
    7. 7)
      • 7. Wen, S., Zeng, Z., Huang, T., et al: ‘Fuzzy modeling and synchronization of different memristor-based chaotic circuits’, Phys. Lett. A, Gen. At. Solid State Phys., 2013, 377, (34–36), pp. 20162021.
    8. 8)
      • 8. Muthuswamy, B.: ‘Implementing memristor based chaotic circuits’, Int. J. Bifurc. Chaos, 2010, 20, (5), pp. 13351350.
    9. 9)
      • 9. Roy, C., Islam, A.: ‘TG based 2T2M RRAM using memristor as memory element’, Indian J. Sci. Technol., 2016, 9, (33), pp. 711.
    10. 10)
      • 10. Chua, L., Kang, S.M.: ‘Memristive devices and systems’, Proc. IEEE, 1976, 64, (2), pp. 209223.
    11. 11)
      • 11. Di Ventra, M., Pershin, Y.V.: ‘On the physical properties of memristive, memcapacitive and meminductive systems’, Nanotechnology, 2013, 24, (25), p. 255201.
    12. 12)
      • 12. Pershin, Y.V., La Fontaine, S., Di Ventra, M.: ‘Memristive model of amoeba learning’, Phys. Rev., 2009, 80, (021926), pp. 16.
    13. 13)
      • 13. Kvatinsky, S., Friedman, E.G., Kolodny, A., et al: ‘TEAM: threshold adaptive memristor model’, IEEE Trans. Circuits Syst. I Regul. Pap., 2013, 60, (1), pp. 211221.
    14. 14)
      • 14. Pickett, M.D., Strukov, D.B., Borghetti, J.L., et al: ‘Switching dynamics in titanium dioxide memristive devices’, J. Appl. Phys., 2009, 106, (7), p. 074508.
    15. 15)
      • 15. Yakopcic, C., Taha, T.M., Subramanyam, G., et al: ‘A memristor device model’, IEEE Electron Device Lett.., 2011, 32, (10), pp. 14361438.
    16. 16)
      • 16. Pershin, Y.V., Slipko, V.A., Di Ventra, M.: ‘Complex dynamics and scale invariance of one-dimensional memristive networks’, Phys. Rev., 2013, 87, p. 022116.
    17. 17)
      • 17. Cho, G., Bin Kim, Y., Lombardi, F., et al: ‘Performance evaluation of CNFET-based logic gates’. 2009 IEEE Intrumentation and Measurement Technology Conf., I2MTC 2009, Singapore, Singapore, 2009, pp. 909912.
    18. 18)
      • 18. McEuen, P.L., Fuhrer, M.S., Park, H.: ‘Single-walled carbon nanotube electronics’, IEEE Trans. Nanotechnol., 2002, 1, (1), pp. 7885.
    19. 19)
      • 19. Saito, R., Dresselhaus, G., Dresselhaus, M.S.: Physical properties of carbon nanotubes (Imperial College Press, London, 1998).
    20. 20)
      • 20. Sun, Y., Kursun, V.: ‘Uniform carbon nanotube diameter and nanoarray pitch for VLSI of 16 nm P-channel MOSFETs’. 2011 IEEE/IFIP 19th Int. Conf. VLSI Syst. VLSI-SoC 2011, Hong Kong, China, 2011, pp. 226231.
    21. 21)
      • 21. Ashraf, R., Nain, R.K., Chrzanowska-Jeske, M., et al: ‘Design methodology for carbon nanotube based circuits in the presence of metallic tubes’. Proc. 2010 IEEE/ACM Int. Symp. Nanoscale Archit. NANOARCH 2010, 2010, pp. 7176.
    22. 22)
      • 22. Imran, A., Hasan, M., Islam, A., et al: ‘Optimized design of a 32-nm CNFET-based low-power ultrawideband CCII’, IEEE Trans. Nanotechnol., 2012, 11, (6), pp. 11001109.
    23. 23)
      • 23. Pal, S., Islam, A.: ‘Variation tolerant differential 8T SRAM cell for ultralow power applications’, IEEE Trans. Comput. Des. Integr. Circuits Syst., 2016, 35, (4), pp. 549558.
    24. 24)
      • 24. Pal, S., Islam, A.: ‘Low power and high variation tolerant 9T-SRAM cell at 16-nm technology node’, Indian J. Sci. Technol., 2016, 9, (40), pp. 17.
    25. 25)
      • 25. Pal, S., Islam, A.: ‘9-T SRAM cell for reliable ultralow-power applications and solving multibit soft-error issue’, IEEE Trans. Device Mater. Reliab., 2016, 16, (2), pp. 172182.
    26. 26)
      • 26. Stanford University, CNFET model website, 2008. Available at http://nano.stanford.edu./model.php.?Id=23.
    27. 27)
      • 27. Deng, J., Wong, H.-S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and Its application − part I: Model of the intrinsic channel region’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31863194.
    28. 28)
      • 28. Deng, J., Wong, H.S.P.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including nonidealities and its application − part II: Full device model and circuit performance benchmarking’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31953205.
    29. 29)
      • 29. Nanoscale Integration and Modeling (NIMO) Group, Arizona State University (ASU). Available at http://ptm.asu.edu/.
    30. 30)
      • 30. Alibart, F., Gao, L., Hoskins, B.D., et al: ‘High precision tuning of state for memristive devices by adaptable variation-tolerant algorithm’, Nanotechnology, 2012, 23, (7), p. 075201.
    31. 31)
      • 31. Choi, S., Sheridan, P., Lu, W.D.: ‘Data clustering using memristor networks’, Sci. Rep., 5, 2015, pp. 110.
    32. 32)
      • 32. Filanovsky, I.M., Allam, A.: ‘Mutual compensation of mobility and threshold voltage temperature effects with applications in CMOS circuits’, IEEE Trans. Circuits Syst. Fundam. Theory Appl., 2001, 48, (7), pp. 876884.
    33. 33)
      • 33. Sinha, S.K., Chaudhury, S.: ‘Advantage of CNTFET characteristics over MOSFET to reduce leakage power’. IEEE Int. Conf. Devices, Circuits Syst. ICCDCS, Combiatore, India, 2014, pp. 15.
    34. 34)
      • 34. Agarwal, A., Mukhopadhyay, S., Raychowdhury, A., et al: ‘Leakage power analysis and reduction for nanoscale circuits’, IEEE Micro, 2006, 26, (2), pp. 6880.
    35. 35)
      • 35. Fallah, F., Pedram, M.: ‘Standby and active leakage current control and minimization in CMOS VLSI circuits’, IEICE Trans. Electron., 2005, E88-C, (4), pp. 509519.
    36. 36)
      • 36. Chen, A., Lin, M.: ‘Variability of resistive switching memories and its impact on crossbar array performance’. 2011 Int. Reliability Physics Symp., Monterey, CA, USA, 2011, pp. 843846.
    37. 37)
      • 37. Ali, M., Ahmed, M., Chrzanowska-jeske, M.: ‘Logical effort model for CNFET-based circuits’. IEEE Int. Conf. Nanotechnology, Toronto, ON, Canada, 2015, pp. 12181221.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5388
Loading

Related content

content/journals/10.1049/iet-cds.2018.5388
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address