access icon free Low-power low-data-rate IR-UWB transmitter for paediatric apnoea monitoring system

Wireless telemetry has recently become a very important feature for healthcare monitoring and wearable systems. Several factors such as reliability, power budget, and cost impose design constraints for data transmission. Literature reported transmitters characterised by lower energy efficiency for low data rate operations and are not quite suitable for low-power biomedical applications. To overcome these constraints, this paper presents an impulse radio ultra-wideband (IR-UWB) transmitter that implements a heavy duty-cycling approach to achieve low power consumption. The transmitter is designed to be used for a non-invasive wireless respiration monitoring and apnoea detection system for premature infants. The transmitter is designed and fabricated in 130 nm standard CMOS process achieving 9.12 µW of power consumption and 91.2 pJ per pulse at 100 kbps data rate.

Inspec keywords: ultra wideband communication; radio transmitters; biomedical electronics; patient monitoring; paediatrics; health care; CMOS integrated circuits; low-power electronics; telemetry

Other keywords: impulse radio ultra-wideband transmitter; data transmission; low power consumption; IR-UWB transmitter; low-power low-data-rate; premature infants; standard CMOS process; low-power biomedical applications; wireless telemetry; bit rate 100 kbit/s; paediatric apnoea monitoring system; wearable systems; size 130.0 nm; power consumption; apnoea detection system; heavy duty-cycling approach; noninvasive wireless respiration monitoring; healthcare monitoring; power 9.12 muW; power budget

Subjects: Patient care and treatment; Telemetering systems; Telecommunication systems (energy utilisation); CMOS integrated circuits; Radio links and equipment; Patient care and treatment; Electrical/electronic equipment (energy utilisation); Biology and medical computing

References

    1. 1)
      • 12. Batur, O.Z., Akdag, E., Akkurt, H.K., et al: ‘An ultra low-power dual-band IR-UWB transmitter in 130-nm CMOS’, IEEE Trans. Circuits Syst. II, Express Briefs, 2012, 59, (11), pp. 701705.
    2. 2)
      • 28. Crepaldi, M., Li, C., Fernandes, J.R., et al: ‘An ultra-wideband impulse-radio transceiver chipset using synchronized-OOK modulation’, IEEE J. Solid-State Circuits, 2011, 46, pp. 22842299.
    3. 3)
      • 24. Khaleghi, A., Chávez-Santiago, R., Balasingham, I.: ‘Ultra-wideband pulse-based data communications for medical implants’, IET Commun., 2010, 4, (15), pp. 18891897.
    4. 4)
      • 15. Khan, F., Cho, S.H.: ‘A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar’, Sensors, 2017, 17, (2), p. 290.
    5. 5)
      • 6. Pantelopoulos, A., Bourbakis, N.G.: ‘A survey on wearable sensor-based systems for health monitoring and prognosis’, IEEE Trans. Syst. Man Cybern. C, Appl. Rev., 2010, 40, (1), pp. 112.
    6. 6)
      • 21. Anh, P. T.: ‘Energy efficient CMOS transceiver for pulse based UWB applications’. PhD Thesis, Korea Advanced Institute of Science and Technology (KAIST), 2008.
    7. 7)
      • 3. Mahbub, I., Pullano, S.A., Wang, H., et al: ‘A low-power wireless piezoelectric sensor-based respiration monitoring system realized in CMOS process’, IEEE Sens. J., 2017, 17, (6), pp. 18581864.
    8. 8)
      • 5. Rashvand, H.F., Salcedo, V.T., Sánchez, E.M., et al: ‘Ubiquitous wireless telemedicine’, IET Commun., 2008, 2, (2), pp. 237254.
    9. 9)
      • 4. Monton, E., Hernandez, J.F., Blasco, J.M., et al: ‘Body area network for wireless patient monitoring’, IET Commun., 2008, 2, (2), pp. 215222.
    10. 10)
      • 14. Mahbub, I., Islam, S.K.: ‘A low-power impulse radio ultra-wideband (IR-UWB) transmitter for biomedical sensor applications’. United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2017, pp. 12.
    11. 11)
      • 9. Rabaey, J.M, Ammer, J., Otis, B., et al: ‘Ultra-low-power design’, IEEE Circuits Devices Mag., 2006, 22, (4), pp. 2329.
    12. 12)
      • 11. Molnar, A., Lu, B., Lanzisera, S., et al: ‘An ultra-low power 900 MHz RF transceiver for wireless sensor networks’. IEEE Proc. of Custom Integrated Circuits Conf., Orlando, FL, USA, 3–6 Oct. 2004, pp. 401404.
    13. 13)
      • 13. Huo, Y., Dong, X., Lu, P.: ‘Ultra-wideband transmitter design based on a new transmitted reference pulse cluster’, ICT Express, 2017, 3, (3), pp. 142147.
    14. 14)
      • 17. Leem, S.K., Khan, F., Cho, S.H.: ‘Vital sign monitoring and mobile phone usage detection using IR-UWB radar for intended use in car crash prevention’, Sensors, 2017, 17, (6), p. 1240.
    15. 15)
      • 20. Dorta-Quiñones, C.I., Wang, X.Y., Dokania, R.K., et al: ‘A wireless FSCV monitoring IC with analog background subtraction and UWB telemetry’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, pp. 289299.
    16. 16)
      • 2. Mahbub, I., Islam, S.K., Shamsir, S., et al: ‘A low power wearable respiration monitoring sensor using pyroelectric transducer’. United States National Committee of URSI National Radio Science Meeting (USNC-URSI NRSM), Boulder, CO, USA, 2017, pp. 12.
    17. 17)
      • 23. Phan, A.T., Lee, J., Krizhanovskii, V., et al: ‘Energy-efficient low-complexity CMOS pulse generator for multiband UWB impulse radio’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2008, 55, pp. 35523563.
    18. 18)
      • 1. Pullano, S.A., Mahbub, I., Bianco, M.G., et al: ‘Medical devices for paediatric apnea monitoring and therapy: past and New trends’, IEEE Rev. Biomed. Eng., 2017, 10, pp. 199212.
    19. 19)
      • 22. Mercier, P.P, Daly, D.C., Chandrakasan, A.P.: ‘An energy-efficient all-digital UWB transmitter employing dual capacitively-coupled pulse-shaping drivers’, IEEE J. Solid-State Circuits, 2009, 44, pp. 16791688.
    20. 20)
      • 19. Brenna, S., Padovan, F., Neviani, A., et al: ‘A 64-channel 965-µW neural recording SoC with UWB wireless transmission in 130-nm CMOS’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (6), pp. 528532.
    21. 21)
      • 18. Leib, M., Menzel, W., Schleicher, B., et al: ‘Vital signs monitoring with a UWB radar based on a correlation receiver. In antennas and propagation (EuCAP)’. IEEE Proc. of the Fourth European Conf., Barcelona, Spain, 2010, pp. 15.
    22. 22)
      • 16. Lazaro, A., Girbau, D., Villarino, R.: ‘Analysis of vital signs monitoring using an IR-UWB radar’, Prog. Electromagn. Res., 2010, 100, pp. 265284.
    23. 23)
      • 8. Otis, B., Rabaey, J: ‘Ultra-low power wireless technologies for sensor networks’ (Springer, US, 2007).
    24. 24)
      • 10. Cook, B.W., Berny, A., Molnar, A., et al: ‘Low-power 2.4-GHz transceiver with passive RX front-end and 400-mV supply’, IEEE J. Solid-State Circuits, 2006, 41, pp. 27572766.
    25. 25)
      • 27. Dokania, R.K., Wang, X.Y., Dorta-Quinones, C.I., et al: ‘A 6 μw, 100 kbps, 3–5 GHz, UWB impulse radio transmitter’. Proc. of the 16th ACM/IEEE Int. Symp. on Low Power Electronics and Design, Austin, TX, USA, 2010, pp. 9194.
    26. 26)
      • 25. Scuderi, A., Ragonese, E., Palmisano, G.: ‘24-GHz ultra-wideband transmitter for vehicular short-range radar applications’, IET Circuits Devices Syst., 2009, 3, (6), pp. 313321.
    27. 27)
      • 26. Jovanović, G.S., Stojčev, M.: ‘Linear current starved delay element’. Proc. of the Int. Scientific Conf. on Information, Communication and Energy Systems and Technologies (ICEST), NÏS, Serbia and Montenegro, 2005, pp. 5962.
    28. 28)
      • 7. Smith, S., Tang, T.B., Terry, J.G., et al: ‘Development of a miniaturised drug delivery system with wireless power transfer and communication’, IET Nanobiotechnol., 2007, 1, (5), pp. 8086.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5334
Loading

Related content

content/journals/10.1049/iet-cds.2018.5334
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading