Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Resource-efficient FPGA implementation of perspective transformation for bird's eye view generation using high-level synthesis framework

Bird's eye view (BEV) generation from front-looking video stream is considered an important pre-processing task in various computer vision applications such as driver assistance systems. In this work, hardware implementation of this process using high-level synthesis in Simulink environment has been considered for rapid prototyping under real-time constraints. Traditionally, researchers have employed lookup table-based approaches to circumvent the exorbitant cost of implementing arithmetic modules associated with the perspective transformation. The hardware implementation scheme proposed here, however, demonstrates that a polynomial approximation over the limited domain of the involved operands not only saves precious hardware resources but also provides better fixed-point precision. Synthesis results on Zynq-7000 FPGA show that the proposed circuit reduces the block memory utilisation by 9% compared to the lookup table-based built-in Simulink Vision HDL block. The proposed design evaluates the results in fixed-point format which is essential for subsequent bilinear interpolation to produce high-fidelity output frame, albeit at the cost of 4% increase in DSP48E utilisation. The approximation error of the proposed solution is less than quarter-pixel on average. The proposed hardware has been integrated as an IP core in a hardware-software co-design system. The whole framework is publicly available to facilitate practitioners and researchers.

References

    1. 1)
      • 25. Lin-Bo, L., In-Sung, K., Kyeong-Yuk, M., et al: ‘Low-Cost implementation of bird's-eye view system for camera-on-vehicle’. 2010 Digest of Technical Papers Int. Conf. on Consumer Electronics (ICCE), Las Vegas, NV, USA, 2010.
    2. 2)
      • 2. Gojak, V., Janjatovic, J., Vukota, N., et al: ‘Informational bird's Eye view system for parking assistance’. 2017 IEEE 7th Int. Conf. on Consumer Electronics - Berlin (ICCE-Berlin), Berlin, Germany, 2017.
    3. 3)
      • 8. Bi, Y., Li, C., Yang, F.: ‘Very high level synthesis for image processing applications’. Proc. of the 10th Int. Conf. on Distributed Smart Camera, (ACM, 2016), Paris, France, 2016.
    4. 4)
      • 7. Bailey, D.G.: ‘The advantages and limitations of high level synthesis for fpga based image processing’. Proc. of the 9th Int. Conf. on Distributed Smart Cameras, (ACM, 2015), Seville, Spain, 2015.
    5. 5)
      • 33. Lai, C., Luo, W., Chen, S., et al: ‘Zynq-Based full Hd around view monitor system for intelligent vehicle’. 2017 Asia-Pacific Signal and Information Processing Association Annual Summit and Conf. (APSIPA ASC), Kuala Lumpur, Malaysia, 2017.
    6. 6)
      • 4. Ehlgen, T., Pajdla, T., Ammon, D.: ‘Eliminating blind spots for assisted driving’, IEEE Trans. Intell. Transp. Syst., 2008, 9, (4), pp. 657665.
    7. 7)
      • 17. Guo, C., Kidono, K., Meguro, J., et al: ‘A Low-cost solution for automatic lane-level Map generation using conventional in-Car sensors’, IEEE Trans. Intell. Transp. Syst., 2016, 17, (8), pp. 23552366.
    8. 8)
      • 9. Syrris, V., Ferri, S., Ehrlich, D., et al: ‘Image enhancement and feature extraction based on low-resolution satellite data’, IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens., 2015, 8, (5), pp. 19861995.
    9. 9)
      • 26. Jin, S., Cho, J., Pham, X.D., et al: ‘Fpga design and implementation of a real-time stereo vision system’, IEEE Trans. Circuits Syst. Video Technol., 2010, 20, (1), pp. 1526.
    10. 10)
      • 16. Aly, M.: ‘Real time detection of lane markers in urban streets’. 2008 IEEE Intelligent Vehicles Symp., Eindhoven, Netherlands, 2008.
    11. 11)
      • 24. Akin, A., Baz, I., Gaemperle, L.M., et al: ‘Compressed look-up-table based real-time rectification hardware’. 2013 IFIP/IEEE 21st Int. Conf. on Very Large Scale Integration (VLSI-SoC), Istanbul, Turkey, 2013.
    12. 12)
      • 27. Hübert, H., Stabernack, B., Zilly, F.: ‘Architecture of a low latency image rectification engine for stereoscopic 3-D hdtv processing’, IEEE Trans. Circuits Syst. Video Technol., 2013, 23, (5), pp. 813822.
    13. 13)
      • 5. Open source computer vision library’. Available at https://github.com/opencv/opencv, accessed 1st January 2018.
    14. 14)
      • 21. Mody, M., Allu, R., Nandan, N., et al: ‘Flexible and efficient perspective transform engine’. 2017 IEEE Int. Conf. on Consumer Electronics-Asia (ICCE-Asia), Bangalore, India, 2017.
    15. 15)
      • 12. Vivado high-level synthesis’. Available at https://www.xilinx.com/products/design-tools/vivado/integration/esl-design.html, accessed 19th May, 2018.
    16. 16)
      • 20. Eo, S., Lee, J.G., Kim, M., et al: ‘Asic design for real-time one-shot correction of optical aberrations and perspective distortion in microdisplay systems’, IEEE. Access., 2018, 6, pp. 1947819490.
    17. 17)
      • 19. Oh, S., Kim, G.: ‘Fpga-based fast image warping with data-parallelization schemes’, IEEE Trans. Consum. Electron., 2008, 54, (4), pp. 20532059.
    18. 18)
      • 18. Jeon, B., Park, G., Lee, J., et al: ‘A memory-efficient architecture of full Hd around view monitor systems’, IEEE Trans. Intell. Transp. Syst., 2014, 15, (6), pp. 26832695.
    19. 19)
      • 10. Mathworks vision Hdl toolbox: Available at https://www.mathworks.com/products/vision-hdl.html, accessed 1st January 2018.
    20. 20)
      • 6. Febbo, P.D., Mattoccia, S., Mutto, C.D.: ‘Real-time image distortion correction: analysis and evaluation of fpga-compatible algorithms’. 2016 Int. Conf. on ReConFigurable Computing and FPGAs (ReConFig), Cancun, Mexico, 2016.
    21. 21)
      • 13. Perri, S., Frustaci, F., Spagnolo, F., et al: ‘Design of real-time fpga-based embedded system for stereo vision’. 2018 IEEE Int. Symp. on Circuits and Systems (ISCAS), Florence, Italy, 2018.
    22. 22)
      • 28. Botero, D., Piat, J., Chalimbaud, P., et al: ‘Fpga implementation of mono and stereo inverse perspective mapping for obstacle detection’. Proc. of the 2012 Conf. on Design and Architectures for Signal and Image Processing, Karlsruhe, Germany, 2012.
    23. 23)
      • 23. Kim, J.-h., Kim, J.-g., Oh, J.-k., et al: ‘Efficient hardware implementation of real-time rectification using adaptively compressed Lut’, J. Semicond.Technol. Sci., 2016, 16, (1), pp. 4457.
    24. 24)
      • 14. Isaksson, J., Bertilsson, E., Bohlin, H.: ‘Fpga-Accelerated Image Processing Using High Level Synthesis with Opencl’. Master of Science in Electrical Engineer, Linköping University, 2017.
    25. 25)
      • 29. Jorg, S., Langwald, J., Nickl, M.: ‘Fpga based real-time visual servoing’. 17th Int. Conf. on Pattern Recognition (ICPR), Cambridge, UK, 2004.
    26. 26)
      • 15. Qifa, K., Kanade, T.: ‘Transforming camera geometry to a virtual downward-looking camera: robust Ego-motion estimation and ground-layer detection’. IEEE Computer Society Conf. on Computer Vision and Pattern Recognition, Madison, WI, USA, 2003.
    27. 27)
      • 11. Hee-Chul, K., Byong-Heon, K., Myung-Ryul, C.: ‘An image interpolator with image improvement for Lcd controller’, IEEE Trans. Consum. Electron., 2001, 47, (2), pp. 263271.
    28. 28)
      • 30. Blasinski, H., Hai, W., Lohier, F.: ‘Real-time, color image barrel distortion removal’. 2012 IEEE Int. Symp. on Circuits and Systems, Seoul, South Korea, 2012.
    29. 29)
      • 1. Geiger, A., Lauer, M., Wojek, C., et al: ‘3d traffic scene understanding from movable platforms’, IEEE Trans. Pattern Anal. Mach. Intell., 2014, 36, (5), pp. 10121025.
    30. 30)
      • 32. Hernandez, A., Gardel, A., Perez, L., et al: ‘Real-time image distortion correction using fpga-based system’. IECON 2006–32nd Annual Conf. on IEEE Industrial Electronics, Paris, France, 2006.
    31. 31)
      • 3. Jia, M., Sun, Y., Wang, J.: ‘Obstacle detection in stereo bird's eye view images’. 2014 IEEE 7th Joint Int. Information Technology and Artificial Intelligence Conf., Chongqing, China, 2014.
    32. 32)
      • 22. Kim, J.h., Oh, J.k., Kang, S.m., et al: ‘A real-time rectification using an adaptive differential encoding for high-resolution video’. 16th Int. Conf. on Advanced Communication Technology, 2014.
    33. 33)
      • 31. Blasinski, H., Wei, H., Lohier, F.: ‘Fpga architecture for real-time barrel distortion correction of colour images’. 2011 IEEE Int. Conf. on Multimedia and Expo, Barcelona, Spain, 2011.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5263
Loading

Related content

content/journals/10.1049/iet-cds.2018.5263
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address