access icon free Symbiotic organisms search algorithm for optimal design of CMOS two-stage op-amp with nulling resistor and robust bias circuit

This study suggests an evolutionary technique namely symbiotic organisms search (SOS) algorithm based optimal designs of two different analogue very-large-scale integration circuits. The configurations considered here are nulling resistor compensation based complementary metal–oxide–semiconductor (CMOS) two-stage op-amp and two-stage CMOS op-amp with robust bias circuit. The prime goal of this work is the sizing of metal–oxide–semiconductor (MOS) transistors employing the SOS algorithm to optimise the area occupied by the individual circuit. Design results based on the SOS algorithm are authenticated with SPICE simulation. SPICE simulation results reveal that all the design specifications are firmly satisfied for both the circuits. Moreover, SPICE based results show that the SOS algorithm provides much better results compared to the earlier reported techniques regarding the gain, MOS area and power dissipation for the abovementioned op-amp circuits.

Inspec keywords: MOSFET circuits; integrated circuit design; optimisation; VLSI; low-power electronics; CMOS integrated circuits; search problems; operational amplifiers

Other keywords: robust bias circuit; complementary metal–oxide–semiconductor two-stage op-amp; MOS transistors; power dissipation; SOS algorithm; evolutionary technique; analogue very-large-scale integration circuits; metal–oxide–semiconductor transistors; nulling resistor compensation; SPICE simulation; symbiotic organisms search algorithm; op-amp circuits; two-stage CMOS op-amp; CMOS two-stage op-amp

Subjects: CMOS integrated circuits; Insulated gate field effect transistors; Amplifiers; Optimisation techniques; Electrical/electronic equipment (energy utilisation)

References

    1. 1)
      • 10. Chen, Y.L., Wu, W.R., Liu, C.N., et al: ‘Simultaneous optimization of analog circuits with reliability and variability for applications on flexible electronics’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2014, 33, (1), pp. 2435.
    2. 2)
      • 1. Vural, R.A., Yildirim, T.: ‘Analog circuit sizing via swarm intelligence’, AEU, Int. J. Electron. Commun., 2012, 66, (9), pp. 732740.
    3. 3)
      • 18. Mahata, S., Saha, S.K., Kar, R., et al: ‘Optimal design of wideband fractional order digital integrator using symbiotic organisms search algorithm’, IET Circuits Devices Syst., 2018, 12, (4), pp. 362373.
    4. 4)
      • 25. De, B.P., Maji, K.B., Kar, R., et al: ‘Application of improved PSO for optimal design of CMOS two-stage opamp using nulling resistor compensation circuit’. 2017 Devices for Integrated Circuit (DevIC), Kalyani, India, March 2017, pp. 110115.
    5. 5)
      • 16. Verma, S., Saha, S., Mukherjee, V.: ‘A novel symbiotic organisms search algorithm for congestion management in deregulated environment’, J. Exp. Theor. Artif. Intell., 2017, 29, (1), pp. 5979.
    6. 6)
      • 15. Hasanien, H.M., El-Fergany, A.A.: ‘Symbiotic organisms search algorithm for automatic generation control of interconnected power systems including wind farms’, IET Gener. Transm. Distrib., 2017, 11, (7), pp. 16921700.
    7. 7)
      • 12. Cijan, G., Tuma, T., Búrmen, Á.: ‘Direct search approach to integrated circuit sizing for high parametric yield’, IET Circuits Devices Syst., 2011, 5, (1), pp. 3745.
    8. 8)
      • 20. Saha, S., Mukherjee, V.: ‘Optimal placement and sizing of DGs in RDS using chaos embedded SOS algorithm’, IET Gener. Transm. Distrib., 2016, 10, (14), pp. 36713680.
    9. 9)
      • 2. Vural, R.A., Yildirim, T.: ‘Swarm intelligence based sizing methodology for CMOS operational amplifier’. 2011 IEEE 12th Int. Symp. on Computational Intelligence and Informatics (CINTI), Budapest, Hungary, November 2011, pp. 525528.
    10. 10)
      • 28. Agarwal, A., Shekhar, C.: ‘Figure-of-merit-based area-constrained design of differential amplifiers’, VLSI Des., 2008, 2008, pp. 15.
    11. 11)
      • 29. Cheng, M.Y., Prayogo, D.: ‘Symbiotic organisms search: a new metaheuristic optimization algorithm’, Comput. Struct., 2014, 139, pp. 98112.
    12. 12)
      • 24. Mahattanakul, J., Chutichatuporn, J.: ‘Design procedure for two-stage CMOS opamp with flexible noise-power balancing scheme’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2005, 52, (8), pp. 15081514.
    13. 13)
      • 5. Ceperic, V., Butkovic, Z., Baric, A.: ‘Design and optimization of self-biased complementary folded cascode’. MELECON 2006-2006 IEEE Mediterranean Electrotechnical Conf., Malaga, Spain, May 2006, pp. 145148.
    14. 14)
      • 3. Kennedy, J., Eberhart, R.: ‘Particle swarm optimization’. Proc. of ICNN'95 – Int. Conf. on Neural Networks, Perth, WA, Australia, Australia, November 1995, 4, pp. 19421948.
    15. 15)
      • 7. Hershenson, M.D., Boyd, S.P., Lee, T.H.: ‘Optimal design of a CMOS op-amp via geometric programming’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2001, 20, (1), pp. 121.
    16. 16)
      • 22. Thakker, R.A., Baghini, M.S., Ratil, M.B.: ‘Low-power low-voltage analog circuit design using hierarchical particle swarm optimization’. 2009 22nd Int. Conf. on VLSI Design, New Delhi, India, January 2009, pp. 427432.
    17. 17)
      • 11. Panda, M., Patnaik, S.K., Mal, A.K.: ‘Performance enhancement of a VCO using symbolic modelling and optimisation’, IET Circuits Devices Syst., 2018, 12, (2), pp. 196202.
    18. 18)
      • 23. Gupta, H., Ghosh, B.: ‘Analog circuits design using ant colony optimization’, Int. J. Electron., Comput. Commun. Technol., 2010, 2, pp. 921.
    19. 19)
      • 17. Niharika, N., Mukherjee, V.: ‘Day-ahead demand side management using symbiotic organisms search algorithm’, IET Gener. Transm. Distrib., 2018, 12, (14), pp. 34873494.
    20. 20)
      • 27. Leene, L.B., Constandinou, T.G.: ‘Ultra-low power design strategy for two-stage amplifier topologies’, Electron. Lett., 2014, 50, (8), pp. 583585.
    21. 21)
      • 6. Liu, B., Wang, Y., Yu, Z., et al: ‘Analog circuit optimization system based on hybrid evolutionary algorithms’, Integr. VLSI J., 2009, 42, (2), pp. 137148.
    22. 22)
      • 19. Dib, N., El-Asir, B.: ‘Optimal design of analog active filters using symbiotic organisms search’, Int. J. Numer. Model., 2018, 31, (5: e2323), pp. 115.
    23. 23)
      • 30. Baker, R.J., Li, H.W., Boyce, D.E.: ‘CMOS circuit design, layout, and simulation’ (Wiley Interscience, Hoboken, New Jersey, USA, 1998).
    24. 24)
      • 21. Saha, D., Datta, A., Das, P.: ‘Optimal coordination of directional overcurrent relays in power systems using Symbiotic Organism Search Optimisation technique’, IET Gener. Transm. Distrib., 2016, 10, (11), pp. 26812688.
    25. 25)
      • 9. Liu, B.D., Lee, J.Y., Wang, H.H.: ‘Parameter extraction and optimization for MOSFET models’, Int. J. Electron., 1987, 63, (6), pp. 873884.
    26. 26)
      • 26. Allen, P.E., Holberg, D.R.: ‘CMOS analog circuit design’ (Oxford University Press, NY, USA, 2002, 2nd edn. 2004).
    27. 27)
      • 4. Eberhart, R.C., Shi, Y.: ‘Comparison between genetic algorithms and particle swarm optimization’. Evolutionary Programming VII, Berlin, Heidelberg, 1998, pp. 611616.
    28. 28)
      • 8. Ho, C.S., Liou, J.J.: ‘VLSI neural network circuit using a multiple-input transconductance amplifier and digital multiplexers’, Int. J. Electron., 1995, 79, (5), pp. 577583.
    29. 29)
      • 14. De, B.P., Kar, R., Mandal, D., et al: ‘PSO with aging leader and challengers for optimal design of high speed symmetric switching CMOS inverter’, Int. J. Mach. Learn. Cybern., 2017, 8, (4), pp. 14031422.
    30. 30)
      • 13. De, B.P., Kar, R., Mandal, D., et al: ‘An efficient design of CMOS comparator and folded cascode op-amp circuits using particle swarm optimization with an aging leader and challengers algorithm’, Int. J. Mach. Learn. Cybern., 2016, 7, (2), pp. 325344.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5259
Loading

Related content

content/journals/10.1049/iet-cds.2018.5259
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading