http://iet.metastore.ingenta.com
1887

High-Q second-order all-pass delay network in CMOS

High-Q second-order all-pass delay network in CMOS

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Analogue signal processing (ASP) is a promising alternative to digital signal processing techniques in future telecommunication and data-processing solutions. Second-order all-pass delay networks – the building blocks of ASPs – are currently primarily implemented in off-chip planar media, which is unsuited for volume production. In this study, a novel on-chip complementary metal–oxide–semiconductor (CMOS) second-order all-pass network is proposed that includes a post-production tuning mechanism. It is shown that automated tuning with a genetic local optimiser can compensate for CMOS process variation and parasitics, which make physical realisation otherwise infeasible. Measurements indicate a post-tuning bandwidth of 280 MHz, peak-to-nominal delay variation of 10 ns and magnitude variation of 3.1 dB. This is the first time that measurement results have been reported for an active inductorless on-chip second-order all-pass network with a delay Q-value larger than 1.

References

    1. 1)
      • 1. Gupta, S., Parsa, A., Perret, E., et al: ‘Group-delay engineered non-commensurate transmission line all-pass network for analog signal processing’, IEEE Trans. Microw. Theory Tech., 2010, 58, (9), pp. 23922407.
    2. 2)
      • 2. Caloz, C., Gupta, S., Zhang, Q., et al: ‘Analog signal processing: a possible alternative or complement to dominantly digital radio schemes’, IEEE Microw. Mag., 2013, 14, (6), pp. 87103.
    3. 3)
      • 3. Zou, L., Gupta, S., Caloz, C.: ‘Loss-gain equalized reconfigurable C-section analog signal processor’, IEEE Trans. Microw. Theory Tech., 2017, 65, (2), pp. 555564.
    4. 4)
      • 4. Mandal, M.K., Deslandes, D., Wu, K.: ‘Complementary microstrip–slotline stub configuration for group delay engineering’, IEEE Microw. Wirel. Compon. Lett., 2012, 22, (8), pp. 388390.
    5. 5)
      • 5. Osuch, P.J., Stander, T.: ‘A geometric approach to group delay network synthesis’, Radioengineering, 2016, 25, (2), pp. 351364.
    6. 6)
      • 6. Zhang, Q., Bandler, J.W., Caloz, C.: ‘Design of dispersive delay structures (DDSs) formed by coupled C-sections using predistortion with space mapping’, IEEE Trans. Microw. Theory Tech., 2013, 61, (12), pp. 40404051.
    7. 7)
      • 7. Levy, R.: ‘Realization of practical lumped element all-pass networks for delay equalization of RF and microwave filters’, IEEE Trans. Microw. Theory Tech., 2011, 59, (12), pp. 33073311.
    8. 8)
      • 8. Aronhime, P., Nelson, D., Zurada, J., et al: ‘Realization of current-mode complex pole all-pass networks using a single current conveyor’. IEEE Int. Symp. Circuits and Systems, New Orleans, Louisiana, 1990, pp. 31933196.
    9. 9)
      • 9. Aronhime, P.: ‘Realizations of complex pole all-pass networks’, IEEE Trans. Circuits Syst., 1975, 4, (22), pp. 324328.
    10. 10)
      • 10. Gupta, G., Singh, S.V., Bhooshan, S.V.: ‘VDTA based electronically tunable voltage-mode and trans-admittance biquad filter’, Circuits Syst., 2015, 93, (3), pp. 93102.
    11. 11)
      • 11. Nikfal, B., Gupta, S., Caloz, C.: ‘Increased group delay slope loop system for enhanced-resolution analog signal processing’, IEEE Trans. Microw. Theory Tech., 2010, 59, (6), pp. 16221628.
    12. 12)
      • 12. Aronhime, P.: ‘Transfer-function synthesis using a current conveyor’, IEEE Trans. Circuits Syst., 1974, 21, (2), pp. 312313.
    13. 13)
      • 13. Toker, A., Discigil, M., Cicekoglu, O., et al: ‘Direct synthesis approach for voltage mode transfer functions using current conveyors’. IEEE Asia-Pacific Conf. Circuits and Systems, 1998, pp. 255258.
    14. 14)
      • 14. Chang, C.M.: ‘Multifunction biquadratic filters using current conveyors’, IEEE Trans. Circuits Syst. II, Analog Digit. Signal Process., 1997, 44, (11), pp. 956958.
    15. 15)
      • 15. Horng, J.W.: ‘Voltage-mode universal biquadratic filters using CCIIs’, IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2004, E87–A, (2), pp. 406409.
    16. 16)
      • 16. Chang, M.C.: ‘Universal voltage-mode filter with four inputs and one output using two CCII's’, Int. J. Electron., 1999, 86, (3), pp. 305309.
    17. 17)
      • 17. Liu, S.I., Lee, J.L.: ‘Voltage-mode universal filters using two current conveyors’, Int. J. Electron., 1997, 82, (2), pp. 145150.
    18. 18)
      • 18. Horng, J.W., Lee, M.H., Cheng, H.C., et al: ‘New CCII-based voltage-mode universal biquadratic filter’, Int. J. Electron., 1997, 82, (2), pp. 151156.
    19. 19)
      • 19. Horng, J.W.: ‘Novel universal voltage-mode biquad filter with three inputs and one output using only two current conveyors’, Int. J. Electron., 1996, 80, (4), pp. 543546.
    20. 20)
      • 20. Özoǧuz, S., Güneș, E.O.: ‘Universal filter with three inputs using CCII + ’, Electron. Lett., 1996, 32, (23), p. 2134.
    21. 21)
      • 21. Chang, C., Lee, M.S.: ‘Universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower’, Electron. Lett., 1994, 30, (25), pp. 21122113.
    22. 22)
      • 22. Chang, C.M., Lee, M.S.: ‘Comment: universal voltage-mode filter with three inputs and one output using three current conveyors and one voltage follower’, Electron. Lett., 1995, 31, (5), p. 353.
    23. 23)
      • 23. Ahmadi, P., Maundy, B., Elwakil, A.S., et al: ‘A new second-order all-pass filter in 130 nm CMOS’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (3), pp. 249253.
    24. 24)
      • 24. Hamouda, M., Fischer, G., Weigel, R., et al: ‘A compact analog active time delay line using SiGe BiCMOS technology’. 2013 IEEE Int. Symp. Circuits and Systems, 2013, pp. 10551058.
    25. 25)
      • 25. Lin, X., Liu, J., Lee, H., et al: ‘A 2.5 to 3.5 Gb/s adaptive FIR equalizer with continuous-time wide-bandwidth delay line in 0.25 μm CMOS’, IEEE J. Solid-State Circuits, 2006, 41, (8), pp. 19081918.
    26. 26)
      • 26. Maeng, M., Bien, F., Hur, Y., et al: ‘0.18 μm CMOS equalization techniques for 10 Gb/s fiber optical communication links’, IEEE Trans. Microw. Theory Tech., 2005, 53, (11), pp. 35093519.
    27. 27)
      • 27. Ahmadi, P., Taghavi, M.H., Belostotski, L., et al: ‘10–GHz current-mode 1st and 2nd order all-pass filters on 130 nm CMOS’. IEEE 56th Int. Midwest Symp. Circuits and Systems, 2013, pp. 14.
    28. 28)
      • 28. Garakoui, S.K., Klumperink, E.A., Nauta, B., et al: ‘Compact cascadable gm-C all-pass true time delay cell with reduced delay variation over frequency’, IEEE J. Solid-State Circuits, 2015, 50, (3), pp. 693703.
    29. 29)
      • 29. Ulusoy, A.Ç., Schleicher, B., Schumacher, H.: ‘A tunable differential all-pass filter for UWB true time delay and phase shift applications’, IEEE Microw. Wirel. Compon. Lett., 2011, 21, (9), pp. 462464.
    30. 30)
      • 30. Chang, Y.W., Yan, T.C., Kuo, C.N.: ‘Wideband time-delay circuit’. European Conf. Microwave Integrated Circuits, Manchester, UK, 2011, pp. 454457.
    31. 31)
      • 31. Mondal, I., Krishnapura, N.: ‘A 2 GHz bandwidth, 0.25–1.7 ns true-time-delay element using a variable-order all-pass filter architecture in 0.13 μm CMOS’, IEEE J. Solid-State Circuits, 2017, 52, (8), pp. 21802193.
    32. 32)
      • 32. Osuch, P.J., Stander, T.: ‘An on-chip post-production tunable group delay equaliser’. Int. Conf. Actual Problems of Electron Devices Engineering APEDE 2014, Saratov, Russia, 2014, pp. 177184.
    33. 33)
      • 33. Hassanein, W.S., Awad, I.A., Soliman, A.M.: ‘New high accuracy CMOS current conveyors’, AEU – Int. J. Electron. Commun., 2005, 59, (7), pp. 384391.
    34. 34)
      • 34. Ben Salem, S., Fakhfakh, M., Masmoudi, D.S., et al: ‘A high performances CMOS CCII and high frequency applications’, Analog Integr. Circuits Signal Process., 2006, 49, (1), pp. 7178.
    35. 35)
      • 35. Ramiah, H., Zulkifli, T.Z.: ‘Design and optimization of integrated MOS varactors for high-tunability RF circuits’, IETE J. Res., 2011, 57, (4), pp. 346350.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5252
Loading

Related content

content/journals/10.1049/iet-cds.2018.5252
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address