http://iet.metastore.ingenta.com
1887

Low power radiation aware transistor level design using tri-state inverter embedded non-clock gating technique

Low power radiation aware transistor level design using tri-state inverter embedded non-clock gating technique

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

The effect of radiation on digital circuits in particularly complementary metal oxide semiconductor (CMOS) technology has been known since many years. The two most important radiation effects are total ionisation dose and single-event effects (SEEs). The complexity of circuit will increase depends on the number of gate inputs, which degrades the radiation to accelerate the total dose levels. The incremental dose level affects the circuit parameter failure, which affects the functionality of logic design. Many authors focus to reduce radiation effects with avoid function loss, but those extra efforts consume more power. In this study, a low power radiation aware circuit design is proposed. First, the physics-based modelling approach is used for compute radiation response of each component in the circuit. Tri-state inverter embedded non-clocked gating technique is proposed to eliminate unwanted latches and disables the inverter chain when the input data are kept unchanged, so redundant transitions of delayed clock signals. For simulation purpose, the authors applied their proposed technique in flip–flops and make it as more aware of radiation effects and power consumption. The performance of the proposed circuit design is analysed at 16 nm CMOS predictive technology model in terms of power delay product using HSPICE tool.

References

    1. 1)
      • 1. Gordon, F., Wannemacher, H.: ‘The effects of space radiation on MOSFET devices and some application implications of those effects’, IEEE Trans. Nucl. Sci., 1966, 13, (6), pp. 262272.
    2. 2)
      • 2. Newman, P., Wannemacher, H.: ‘Radiation induced peaking effect in open geometry P-channel MOSFETs’, IEEE Trans. Nucl. Sci., 1967, 14, (6), pp. 299302.
    3. 3)
      • 3. Chiwaki, M., Tomimasu, T.: ‘The effect of radiation damage on the noise performance of FET's’, IEEE Trans. Nucl. Sci., 1975, 22, (6), pp. 26962702.
    4. 4)
      • 4. Share, S., Martin, R.A.: ‘Effects of ionizing radiation on short-channel thin-oxide (200-Å) MOSFETs’, IEEE Trans. Electron Devices, 1975, 22, (8), pp. 619620.
    5. 5)
      • 5. Aitken, J.M.: ‘1 µm MOSFET VLSI technology: part VIII – radiation effects’, IEEE Trans. Electron Devices, 1979, 26, (4), pp. 372379.
    6. 6)
      • 6. Ikeno, R., Ito, H., Asada, K.: ‘One-dimensional analysis of subthreshold characteristics of SOI-MOSFET considering quantum mechanical effects’, VLSI Des., 1998, 6, (1–4), pp. 6567.
    7. 7)
      • 7. Tsaur, B.Y., Fan, J.C.C., Turner, G.W., et al: ‘Effects of ionizing radiation on n-channel MOSFET's fabricated in zone-melting-recrystallized Si films on SiO2’, IEEE Electron Device Lett., 1982, 3, (7), pp. 195197.
    8. 8)
      • 8. Blackburn, D., Berning, D., Benedetto, J., et al: ‘Ionizing radiation effects on power MOSFETS during high speed switching’, IEEE Trans. Nucl. Sci., 1982, 29, (6), pp. 15551558.
    9. 9)
      • 9. Davis, G., Hughes, H., Kamins, T.: ‘Total dose radiation-bias effects in laser-recrystallized SOI MOSFETs’, IEEE Trans. Nucl. Sci., 1982, 29, (6), pp. 16851689.
    10. 10)
      • 10. Kelly, J., Luera, T., Posey, L., et al: ‘Dose enhancement effects in MOSFET IC's exposed in typical 60Co facilities’, IEEE Trans. Nucl. Sci., 1983, 30, (6), pp. 43884393.
    11. 11)
      • 11. Bogaerts, J., Dierickx, B., Meynants, G., et al: ‘Total dose and displacement damage effects in a radiation-hardened CMOS APS’, IEEE Trans. Electron Devices, 2003, 50, (1), pp. 8490.
    12. 12)
      • 12. Virmontois, C., Goiffon, V., Magnan, P., et al: ‘Displacement damage effects due to neutron and proton irradiations on CMOS image sensors manufactured in deep submicron technology’, IEEE Trans. Nucl. Sci., 2010, 57, (6), pp. 31013108.
    13. 13)
      • 13. Virmontois, C., Goiffon, V., Magnan, P., et al: ‘Total ionizing dose versus displacement damage dose induced dark current random telegraph signals in CMOS image sensors’, IEEE Trans. Nucl. Sci., 2011, 58, (6), pp. 30853094.
    14. 14)
      • 14. Reed, R., Marshall, P., Kim, H., et al: ‘Evidence for angular effects in proton-induced single-event upsets’, IEEE Trans. Nucl. Sci., 2002, 49, (6), pp. 30383044.
    15. 15)
      • 15. Koga, R., Yu, P., Crawford, K., et al: ‘Comparison of heavy ion and proton-induced single event effects (SEE) sensitivities’, IEEE Trans. Nucl. Sci., 2002, 49, (6), pp. 31353141.
    16. 16)
      • 16. Makihara, A., Sakaide, Y., Tsuchiya, Y., et al: ‘Single-event effects in 0.18 μm CMOS commercial processes’, IEEE Trans. Nucl. Sci., 2003, 50, (6), pp. 21352138.
    17. 17)
      • 17. Loveless, T., Massengill, L., Bhuva, B., et al: ‘A single-event-hardened phase-locked loop fabricated in 130 nm CMOS’, IEEE Trans. Nucl. Sci., 2007, 54, (6), pp. 20122020.
    18. 18)
      • 18. McIver, J., Clark, L.: ‘Reducing radiation-hardened digital circuit power consumption’, IEEE Trans. Nucl. Sci., 2005, 52, (6), pp. 25032509.
    19. 19)
      • 19. Knudsen, J., Clark, L.: ‘An area and power efficient radiation hardened by design flip–flop’, IEEE Trans. Nucl. Sci., 2006, 53, (6), pp. 33923399.
    20. 20)
      • 20. Hutson, J., Ramachandran, V., Bhuva, B., et al: ‘Single event-induced error propagation through nominally-off transmission gates’, IEEE Trans. Nucl. Sci., 2006, 53, (6), pp. 35583562.
    21. 21)
      • 21. Wissel, L., Cannon, E., Heidel, D., et al: ‘Alpha-particle, carbon-ion and proton-induced flip–flop single-event-upsets in 65 nm bulk technology’, IEEE Trans. Nucl. Sci., 2008, 55, (6), pp. 33753380.
    22. 22)
      • 22. Uznanski, S., Gasiot, G., Roche, P., et al: ‘Single event upset and multiple cell upset modeling in commercial bulk 65-nm CMOS SRAMs and flip–flops’, IEEE Trans. Nucl. Sci., 2010, 57, (4), pp. 18761883.
    23. 23)
      • 23. Dodd, P., Shaneyfelt, M., Flores, R., et al: ‘Single-event upsets and distributions in radiation-hardened CMOS flip–flop logic chains’, IEEE Trans. Nucl. Sci., 2011, 58, (6), pp. 26952701.
    24. 24)
      • 24. Yamamoto, R., Hamanaka, C., Furuta, J., et al: ‘An area-efficient 65 nm radiation-hard dual-modular flip–flop to avoid multiple cell upsets’, IEEE Trans. Nucl. Sci., 2011, 58, (6), pp. 30533059.
    25. 25)
      • 25. Lilja, K., Bounasser, M., Wen, S., et al: ‘Single-event performance and layout optimization of flip–flops in a 28-nm bulk technology’, IEEE Trans. Nucl. Sci., 2013, 60, (4), pp. 27822788.
    26. 26)
      • 26. Cabanas-Holmen, M., Cannon, E.H., Rabaa, S., et al: ‘Robust SEU mitigation of 32 nm dual redundant flip–flops through interleaving and sensitive node-pair spacing’, IEEE Trans. Nucl. Sci., 2013, 60, (6), pp. 43744380.
    27. 27)
      • 27. Xuan, S., Li, N., Tong, J.: ‘SEU hardened flip–flop based on dynamic logic’, IEEE Trans. Nucl. Sci., 2013, 60, (5), pp. 39323936.
    28. 28)
      • 28. He, Y., Chen, S.: ‘Comparison of heavy-ion induced SEU for D- and TMR-flip–flop designs in 65-nm bulk CMOS technology’, Sci. China Inform. Sci., 2014, 57, (10), pp. 17.
    29. 29)
      • 29. Liang, B., Song, R.: ‘Analyzing and mitigating the internal single-event transient in radiation hardened flip–flops at circuit-level’, Sci. China Technol. Sci., 2014, 57, (9), pp. 18341839.
    30. 30)
      • 30. Song, R., Chen, S., He, Y., et al: ‘Flip–flops soft error rate evaluation approach considering internal single-event transient’, Sci. China Inform. Sci., 2015, 58, (6), pp. 112.
    31. 31)
      • 31. Wang, H., Kauppila, J., Lilja, K., et al: ‘Evaluation of SEU performance of 28-nm FDSOI flip–flop designs’, IEEE Trans. Nucl. Sci., 2017, 64, (1), pp. 367373.
    32. 32)
      • 32. Chen, R., Diggins, Z., Mahatme, N., et al: ‘Effects of total-ionizing-dose irradiation on SEU- and SET-induced soft errors in bulk 40-nm sequential circuits’, IEEE Trans. Nucl. Sci., 2017, 64, (1), pp. 471476.
    33. 33)
      • 33. Li, Y., Wang, H., Liu, R., et al: ‘A 65 nm temporally hardened flip–flop circuit’, IEEE Trans. Nucl. Sci., 2016, 63, (6), pp. 29342940.
    34. 34)
      • 34. Hasanbegovic, A., Aunet, S.: ‘Supply voltage dependency on the single event upset susceptibility of temporal dual-feedback flip–flops in a 90 nm bulk CMOS process’, IEEE Trans. Nucl. Sci., 2015, 62, (4), pp. 18881897.
    35. 35)
      • 35. Rahiminejad, M., Saneei, M.: ‘Low-power pulsed hybrid flip–flop based on a C-element’, AEU – Int. J. Electron. Commun., 2014, 68, (9), pp. 907913.
    36. 36)
      • 36. Fleetwood, D., Winokur, P., Reber, R., et al: ‘Effects of oxide traps, interface traps, and ‘‘border traps’’ on metal-oxide-semiconductor devices’, 2017.
    37. 37)
      • 37. Yan, R., Ourmazd, A., Lee, K.: ‘Scaling the Si MOSFET: from bulk to SOI to bulk’, IEEE Trans. Electron Devices, 1992, 39, (7), pp. 17041710.
    38. 38)
      • 38. Sanchez Esqueda, I., Barnaby, H., Holbert, K., et al: ‘Modeling inter-device leakage in 90 nm bulk CMOS devices’, IEEE Trans. Nucl. Sci., 2011, 58, (3), pp. 793799.
    39. 39)
      • 39. Aezinia, F., Najafzadeh, S., Afzali-Kusha, A.: ‘Novel high speed and low power single and double edge-triggered flip–flops’. APCCAS 2006 – 2006 IEEE Asia Pacific Conf. on Circuits and Systems, 2006.
    40. 40)
      • 40. Dai, Y., Shen, J.: ‘Structure and design method for pulse-triggered flip–flops at switch level’, J. Cent. South Univ. Technol., 2010, 17, (6), pp. 12791284.
    41. 41)
      • 41. Mahmoodi, H., Tirumalashetty, V., Cooke, M., et al: ‘Ultra low-power clocking scheme using energy recovery and clock gating’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2009, 17, (1), pp. 3344.
    42. 42)
      • 42. Absel, K., Manuel, L., Kavitha, R.: ‘Low-power dual dynamic node pulsed hybrid flip–flop featuring efficient embedded logic’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (9), pp. 16931704.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5232
Loading

Related content

content/journals/10.1049/iet-cds.2018.5232
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address