Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

LDPC check node implementation using reversible logic

LDPC check node implementation using reversible logic

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Reversible logic is an emerging digital design paradigm which promises low energy dissipation; thanks to its information-lossless nature. True potential of this exciting concept can only be assessed by facing the design of practical complexity applications. Low density parity check (LDPC) decoding is one such application from forward error correction domain. The core of LDPC decoding is the check node (CN) processor, which executes the decoding algorithm and constitutes a major portion of decoder's overall power consumption. This work proposes a low-power LDPC CN architecture using reversible logic gates. Transistor level design and full custom layout of proposed architecture is carried out on UMC complementary metal–oxide–semiconductor technology. All reversible blocks of proposed CN are optimised for quantum cost, garbage outputs and transistor count. The CN functionality is validated with post-layout simulations, layout versus schematic checks and design rule checks. The proposed CN occupies a post-layout area of 0.013 mm2, achieves up to 4.3 GHz frequency and consumes power. The performance of proposed CN is also compared with its implementation using irreversible gates. The proposed CN achieves about 300% reduction in power delay product with affordable complexity as compared to its classical implementation.

References

    1. 1)
      • 17. Raju, I.B.K., Kumar, P.R., Rao, P.B.: ‘Residue arithmetic's using reversible logic gates’. 2014 2nd Int. Conf. on Devices, Circuits and Systems (ICDCS), Combiatore, India, 2014, pp. 16.
    2. 2)
      • 23. Debnath, B., Das, J.C., De, D.: ‘Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication’, IET Circuits Devices Syst., 2017, 11, (1), pp. 5867.
    3. 3)
      • 13. Morita, K.: ‘Reversible computing systems, logic circuits, and cellular automata’. 2012 Third Int. Conf. on Networking and Computing, Okinawa, Japan, 2012, pp. 18.
    4. 4)
      • 7. Toffoli, T.: ‘Reversible computingInternational Colloquium on Automata, Languages, and Programming, (Springer, USA, 1980), pp. 632644.
    5. 5)
      • 22. Touil, L., Ouni, B.: ‘Design of hardware RGB to HMMD converter based on reversible logic’, IET Image Process., 2017, 11, (8), pp. 646655.
    6. 6)
      • 31. Gallager, R.: ‘Low-density parity-check codes’, IRE Trans. Inf. Theory, 1962, 8, (1), p. 21−28.
    7. 7)
      • 47. Shabbir, Z., Ghumman, A.R., Chaudhry, S.M.: ‘A reduced-sp-d3lsum adder-based high frequency 4 × 4 bit multiplier using dadda algorithm’, Circuits Syst. Signal Process., 2016, 35, (9), pp. 31133134.
    8. 8)
      • 9. Peres, A: ‘Reversible logic and quantum computers’, Phys. Rev. A, 1985, 32, pp. 32663276.
    9. 9)
      • 2. Bernstein, K., Cavin, R.K., Porod, W., et al: ‘Device and architecture outlook for beyond cmos switches’, Proc. IEEE, 2010, 98, (12), pp. 21692184.
    10. 10)
      • 1. Dennard, R.H., Gaensslen, F.H., Yu, H.N., et al: ‘Design of ion-implanted mosfet's with very small physical dimensions’, IEEE Solid-State Circuits Soc. News Lett., 2007, 12, (1), pp. 3850.
    11. 11)
      • 30. Zhao, S., Wang, C., Sun, J.: ‘Improvement and implementation of quine-mccluskey algorithm for synthesis of reversible logic circuits’. 2017 IEEE 2nd Advanced Information Technology, Electronic and Automation Control Conf. (IAEAC), Chongqing, China, 2017, pp. 640642.
    12. 12)
      • 39. Singha, T.B., Konwar, S., Roy, S.: ‘Low power design and analysis of fundamental logics using adiabatic array logic’. 2014 Int. Conf. on Signal Propagation and Computer Technology (ICSPCT 2014), Ajmer, India, 2014, pp. 775781.
    13. 13)
      • 12. Sethi, P., Roy, S.: ‘All-optical ultrafast switching in silicon microring resonators and its application to reconfigurable DEMUX/MUX and reversible logic gates’, J. Lightwave Technol., 2014, 32, (12), pp. 21732180.
    14. 14)
      • 3. ‘International technology roadmap for semiconductors (ITRS)’, www.itrs.net, 2007.
    15. 15)
      • 10. Nielsen, M.A., Chuang, I.L.: ‘Quantum computation and quantum information: 10th anniversary edition’ (Cambridge University Press, New York, NY, USA, 2011, 10th edn.).
    16. 16)
      • 48. Alrabad, A.N.: ‘Closed system quantum logic network implementation of the viterbi algorithm’, Facta Univ., 2009, 22, (1), pp. 133.
    17. 17)
      • 49. Rangaraju, H.G., Hegde, V., Raja, K.B., et al: ‘Design of efficient reversible binary comparator’, Proc. Eng., 2012, 30, (2012), pp. 897904.
    18. 18)
      • 38. Kushawaha, S.P.S., Sasamal, T.N.: ‘Modified positive feedback adiabatic logic for ultra low power vlsi’. 2015 Int. Conf. on Computer, Communication and Control (IC4), Indore, India, 2015, pp. 15.
    19. 19)
      • 34. Awais, M., Singh, A., Boutillon, E., et al: ‘A novel architecture for scalable, high throughput, multi-standard LDPC decoder’. 2011 14th Euromicro Conf. on Digital System Design, Oulu, Finland, 2011, pp. 340347.
    20. 20)
      • 32. Awais, M., Condo, C.: ‘Flexible LDPC decoder architectures’, Hindawi J. VLSI Des., 2010, 2012, pp. 116.
    21. 21)
      • 6. Fredkin, E., Toffoli, T.: ‘Conservative logic’, Int. J. Theor. Phys., 1982, 21, pp. 219253.
    22. 22)
      • 36. Wagh, M.D., Sun, Y., Annampedu, V.: ‘Implementation of comparison function using quantum-dot cellular automata’. Proc of NanoTech2008, Boston, MA, 2008, Vol. 3, pp. 7679.
    23. 23)
      • 35. Thomsen, M.K.: ‘Design of reversible logic circuits using standard cells: standard cells and functional programming’, University of Copenhagen, Copenhagen, 2012.
    24. 24)
      • 19. Morrison, M., Lewandowski, M., Meana, R., et al: ‘Design of static and dynamic RAM arrays using a novel reversible logic gate and decoder’. 2011 11th IEEE Int. Conf. on Nanotechnology, Portland, OR, USA, 2011, pp. 417420.
    25. 25)
      • 24. Datta, K., Shrivastav, V., Sengupta, I., et al: ‘Reversible logic implementation of AES algorithm’. 2013 8th Int. Conf. on Design Technology of Integrated Systems in Nanoscale Era (DTIS), Abu Dhabi, UAE, 2013, pp. 140144.
    26. 26)
      • 25. Saravanan, P., Kalpana, P.: ‘Novel reversible design of advanced encryption standard cryptographic algorithm for wireless sensor networks’, Wirel. Pers. Commun., 2018, 100, (4), pp. 14271458.
    27. 27)
      • 16. Saranya, T., Mallikarjunan, P., Rajadurai, M., et al: ‘ASIC implementation of 64-bit comparator using reversible logic’. 2017 Int. Conf. on Innovations in Information, Embedded and Communication Systems (ICIIECS), Coimbatore, India, 2017, pp. 13.
    28. 28)
      • 28. Zulehner, A., Wille, R.: ‘One-pass design of reversible circuits: combining embedding and synthesis for reversible logic’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2017, PP, (99), pp. 11.
    29. 29)
      • 15. Nikhil, G.V., Vaibhav, B.P., Naik, V.G., et al: ‘Design of low power barrel shifter and vedic multiplier with kogge-stone adder using reversible logic gates’. 2017 Int. Conf. on Communication and Signal Processing (ICCSP), Chennai, India, 2017, pp. 16901694.
    30. 30)
      • 4. Bennett, C.H.: ‘Logical reversibility of computation’, IBM J. Res. Dev., 1973, 17, (6), pp. 525532.
    31. 31)
      • 21. Krishna, N., Murugappan, V., Harish, R., et al: ‘Design of a novel reversible nlfsr’. 2017 Int. Conf. on Advances in Computing, Communications and Informatics (ICACCI), Udupi, India, 2017, pp. 22792283.
    32. 32)
      • 37. Kushawaha, S.P.S., Sasamal, T.N.: ‘Modified positive feedback adiabatic logic for ultra low power adder’. 2016 Second Int. Conf. on Computational Intelligence Communication Technology (CICT), Ghaziabad, India, 2016, pp. 378381.
    33. 33)
      • 46. Weste, N.E.H., Harris, D.M.: ‘CMOS VLSI design: a circuits and systems perspective’, 2013.
    34. 34)
      • 26. Jayashree, H.V., Skanda, K., Agrawal, V.K.: ‘Reversible circuit design for GCD computation in cryptography algorithms’, Int. J. Circuit Theory Appl., 2016, 45, (2), pp. 242259.
    35. 35)
      • 40. Saravanan, P., Kalpana, P.: ‘Energy efficient reversible building blocks resistant to power analysis attacks’, J. Circuits Syst. Comput., 2014, 23, (9), p. 1450127.
    36. 36)
      • 8. Feynman, R.P.: ‘Quantum mechanical computers’, Opt. News, 1985, 11, (2), pp. 1120.
    37. 37)
      • 5. Landauer, R.: ‘Irreversibility and heat generation in the computing process’, IBM J. Res. Dev., 1961, 5, (3), pp. 183191.
    38. 38)
      • 43. Navi, K., Kavehie, O., Rouholamini, M., et al: ‘A novel CMOS full adder’. 20th Int. Conf. on VLSI Design held jointly with 6th Int. Conf. on Embedded Systems (VLSID'07) IEEE, Bangalore, India, 2007, pp. 303307.
    39. 39)
      • 45. Jiang, Y., Al sheraidah, A., Wang, Y., et al: ‘A novel multiplexer-based low-power full adder’, IEEE Trans. Circuits Syst. II, Express Briefs, 2004, 51, (7), pp. 345348.
    40. 40)
      • 18. Kumar, S.D., Sk, N.M.: ‘A novel binary content addressable memory design using reversible logic’. Int. Conf. on Computing and Communication Technologies, Hyderabad, India, 2014, pp. 15.
    41. 41)
      • 11. Barenco, A., Bennett, C.H., Cleve, R., et al: ‘Elementary gates for quantum computation’, Phys. Rev. A, 1995, 52, pp. 34573467.
    42. 42)
      • 42. Aditya, M., Kumar, Y.B.N., Vasantha, M.H.: ‘Reversible full/half adder with optimum power dissipation’. 2016 10th Int. Conf. on Intelligent Systems and Control (ISCO), Coimbatore, India, 2016, pp. 14.
    43. 43)
      • 41. Kaur, P., Dhaliwal, B.S.: ‘Design of fault tolearnt full adder/subtractor using reversible gates’. 2012 Int. Conf. on Computer Communication and Informatics, Coimbatore, India, 2012, pp. 15.
    44. 44)
      • 27. Nayak, V.S.P., Madhulika, C., Pravali, U.: ‘Design of low power hamming code encoding, decoding and correcting circuits using reversible logic’. 2017 2nd IEEE Int. Conf. on Recent Trends in Electronics, Information Communication Technology (RTEICT), Bangalore, India, 2017, pp. 778781.
    45. 45)
      • 29. Soeken, M., Roetteler, M., Wiebe, N., et al: ‘Hierarchical reversible logic synthesis using LUTs’. 2017 54th ACM/EDAC/IEEE Design Automation Conf. (DAC), Austin, TX, USA, 2017, pp. 16.
    46. 46)
      • 14. Molahosseini, A.S., Asadpoor, A., Zarandi, A.A.E., et al: ‘Towards efficient modular adders based on reversible circuits’. IEEE Int. Symp. on Circuits and Systems (ISCAS), Florence, Italy, 2018.
    47. 47)
      • 44. Goel, S., Kumar, A., Bayoumi, M.A.: ‘Design of robust, energy-efficient full adders for deep-submicrometer design using hybrid-CMOS logic style’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2006, 14, (12), pp. 13091321.
    48. 48)
      • 33. Wiberg, N.: ‘Codes and decoding on general graphs’. Linkoping University, Linkoping, Sweden, 1996.
    49. 49)
      • 20. Thapliyal, H., Ranganathan, N., Kotiyal, S.: ‘Design of testable reversible sequential circuits’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (7), pp. 12011209.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5222
Loading

Related content

content/journals/10.1049/iet-cds.2018.5222
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address