access icon free Rapid calibration of bits weights error for high-resolution successive approximation register ADC

This study presents the rapid calibration of bits weights error for an 18 bit successive approximation register analogue-to-digital converter (ADC). This calibration technique is a new hybrid algorithm. Comparing to the traditional methods, this technique significantly reduces the convergence time and improves the accuracy of bits weights error estimation. There is no wasteful time in the correction process. This proposed approach estimates the bits weights error not only from the digital-to-analogue converter capacitor mismatch, inter-stage gain error, but also the metal insulator metal (MIM), capacitor second-order voltage coefficient in the ultra-high-resolution ADC. The proposed algorithm has been verified with a test 18 bit ADC chip, where measured results show the calibration is able to improve the peak integral nonlinearity (INL), of the ADC from 29 to 1.0 LSB after calibration. Measured results also show the signal-to-noise and distortion ratio/spurious-free dynamic range of the ADC improves from 83/94 to 96/127 dB after calibration. It will be seen that the calibration is achieved in ∼4k cycles, which is more than ×25 faster than previously published algorithm.

Inspec keywords: capacitors; analogue-digital conversion; calibration; measurement errors; digital-analogue conversion; MIM devices; weighing

Other keywords: interstage gain error; ultrahigh-resolution ADC chip testing; bit weight error estimation; bit weight error calibration technique; MIM capacitor second-order voltage coefficient; register analogue-to-digital converter; digital-to-analogue converter capacitor mismatch; word length 18.0 bit; signal-to-noise and distortion ratio-spurious-free dynamic range; high-resolution successive approximation register ADC

Subjects: Mass and density measurement; Capacitors; Mass and density measurement; Measurement theory; A/D and D/A convertors; Measurement standards and calibration; Measurement standards and calibration; Measurement and error theory

References

    1. 1)
      • 7. Yoshioka, M., Takayama, T., Ishikawa, K., et al: ‘A 10 b 50 MS/s 820 μW SAR ADC with on-chip digital calibration’. Int. Solid-State Circuits Conf. – Digest of Technical Papers, San Fracisco, USA, February 2010, pp. 384386.
    2. 2)
      • 3. Hurrell, C.P., Lyden, C., Laing, D., et al: ‘An 18 b 12.5 MS/s ADC with 93 dB SNR’, IEEE J. Solid-State Circuits, 2010, 45, pp. 26472654.
    3. 3)
      • 1. Li, H., Maddox, M., Michael, C., et al: ‘A signal-independent background-calibrating 20 b 1 MS/s SAR ADC with 0.3 ppm INL’. Int. Solid-State Circuits Conf., February 2018, pp. 242244.
    4. 4)
      • 16. Sahoo, B.D., Razavi, B.: ‘A 12 bit 200 MHz CMOS ADC’, IEEE J. Solid-State Circuits, 2009, 44, (9), pp. 22662380.
    5. 5)
      • 11. Lei, Q., Wu, Z.H., Li, B., et al: ‘Digital background calibration for pipelined SAR ADC based LMS algorithm’. Electron Devices Solid-state Circuits Conf., Hong Kong, China, 2013, pp. 12.
    6. 6)
      • 17. Li, D., Meng, Q., Li, F.: ‘Digital-domain self-calibration of capacitor mismatch for SAR ADC without additional calibration DAC’, ICIC Express Lett., 2017, 11, (6), pp. 10811087.
    7. 7)
      • 4. Li, T., Wang, Y., Zhang, Y., et al: ‘LMS based adaptive bit weights error extraction algorithm used in high resolution A/D converters’. Nano-electronics Conf., Chengdu, China, 2016.
    8. 8)
      • 18. Fan, H.: ‘Effective method to improve linearity of high-resolution SAR ADC’, Microelectron. J., 2017, 61, pp. 3442.
    9. 9)
      • 20. Fan, H., Maloberti, F.: ‘High-resolution SAR ADC with enhanced linearity’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, PP, (99), p. 1.
    10. 10)
      • 13. Shan, Q., Li, G.J., Li, Q.: ‘A fast-convergence and robust digital calibration algorithm for a 14 bit 200 MS/s hybrid pipelined-SAR ADC’. IEEE Int. Midwest Symp. Circuits & Systems, Dallas Texas, USA, 2012, pp. 442445.
    11. 11)
      • 10. Zhou, Y., Xu, B., Chiu, Y.: ‘A 12 bit 160 MS/s two-step SAR ADC with background bit-weight calibration using a time-domain proximity detector’, IEEE J. Solid-State Circuits., 2015, 50, (4), pp. 920931.
    12. 12)
      • 5. McNeill, J., Chan, K., Michael, C., et al: ‘All-digital background calibration of a successive approximation ADC using the ‘split ADC’ architecture’, IEEE TCAS-I, 2011, 58, (10), pp. 23552365.
    13. 13)
      • 12. Wang, G., Kacani, F., Chiu, Y.: ‘IRD digital background calibration of SAR ADC with coarse reference ADC acceleration’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (1), pp. 1115.
    14. 14)
      • 14. Maloberti, F.: ‘Data converters’ (Springer, Italy, 2007).
    15. 15)
      • 2. Shen, J., Shilkata, A., Frenando, L.D., et al: ‘A 16 bit 16 MS/s SAR ADC with on-chip calibration in 55 nm CMOS’, IEEE J. Solid-State Circuits Biol., 2017, PP, (99), pp. 112.
    16. 16)
      • 15. Chiu, Y., Tsang, C.W., Nikolic, B., et al: ‘Least mean square adaptive digital background calibration of pipelined analog-to-digital converters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2004, 51, (1), pp. 3846.
    17. 17)
      • 9. Chang, A.H., Lee, H.-S., Boning, D.: ‘A 12 b 50 MS/s 2.1 mW SAR ADC with redundancy and digital background calibration’. ESSCIRC, Bucharest, Romania, 31 October 2013.
    18. 18)
      • 19. Cao, C., Zhu, Z.: ‘High-resolution 1 MS/s sub-2 radix split-capacitor SAR ADC’, J. Semicond., 2017, 38, (10), p. 105008.
    19. 19)
      • 8. Carlos, J., Ramos, P., Verhelst, M.: ‘Split-delta background calibration for SAR ADCs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (2), pp. 221225.
    20. 20)
      • 6. Xu, H., Huang, H., Cai, Y., et al: ‘A 78.5 dB-SNDR radiation- and meta-stability-tolerant two-step split SAR ADC operating up to 75 MS/s with 24.9 mW power consumption in 65 nm CMOS’. Int. Solid-State Circuits Conf., San Fracisco, USA, February 2017, pp. 476477.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5220
Loading

Related content

content/journals/10.1049/iet-cds.2018.5220
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading