http://iet.metastore.ingenta.com
1887

Analysing the TIPSP-based VOFET through transistor efficiency (gm/I D)

Analysing the TIPSP-based VOFET through transistor efficiency (gm/I D)

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A simple vertical organic field-effect transistor (VOFET) structure has been fabricated using ambipolar 6, 13-bis (triisopropylsilyl ethynyl) pentacene (TIPSP) with a channel length (L) of 90 nm. This device can operate at –2 V which is much lower than the voltage, reported so far for the organic devices based on TIPSP. The first time, the authors are using transistor efficiency to extract VOFET's parameters. The threshold voltage (V th) of the device has been found to vary between 0.18 and 0.38 V with the current on/off ratio (I on /I off) of 104. The mobility (µ) of the device has been calculated as 0.62 cm2/Vs. The sub-threshold slope, transconductance (gm ), output conductance (g d), and early voltage (V E) have been found to be 140 ± 30 mV/decade, 2 µS, 10−6 S, and 1.3 ± 2 V, respectively.

References

    1. 1)
      • 1. Sirringhaus, H.: ‘25th anniversary article: organic field-effect transistors: the path beyond amorphous silicon’, Adv. Mater., 2014, 26, (9), pp. 13191335.
    2. 2)
      • 2. Ben-Sasson, A.J., Greenman, M., Roichman, Y., et al: ‘The mechanism of operation of lateral and vertical organic field effect transistors’, Isr. J. Chem., 2014, 54, (5–6), pp. 568585.
    3. 3)
      • 3. Zaumseil, J., Sirringhaus, H.: ‘Electron and ambipolar transport in organic field-effect transistors’, Chem. Rev., 2007, 107, (4), pp. 12961323.
    4. 4)
      • 4. Ben-Sasson, A.J., Avnon, E., Ploshnik, E., et al: ‘Patterned electrode vertical field effect transistor fabricated using block copolymer nanotemplates’, Appl. Phys. Lett., 2009, 95, (21), p. 213301.
    5. 5)
      • 5. Ma, L., Yang, Y.: ‘Unique architecture and concept for high-performance organic transistors’, Appl. Phys. Lett., 2004, 85, (21), pp. 50845086.
    6. 6)
      • 6. Yang, Y., Heeger, A.J.: ‘A new architecture for polymer transistors’, Nature, 1994, 372, (6504), pp. 344346.
    7. 7)
      • 7. Klinger, M.P., Fischer, A., Kaschura, F., et al: ‘Advanced organic permeable-base transistor with superior performance’, Adv. Mater., 2015, 27, (47), pp. 77347739.
    8. 8)
      • 8. Agrawal, K., Rana, O., Singh, N., et al: ‘Low voltage organic permeable base N-type transistor’, Appl. Phys. Lett., 2016, 109, (16), p. 163301.
    9. 9)
      • 9. Smith, J., Hamilton, R., McCulloch, I., et al: ‘Solution-processed organic transistors based on semiconducting blends’, J. Mater. Chem., 2010, 20, (13), p. 2562.
    10. 10)
      • 10. Kwon, J., Kyung, S., Yoon, S., et al: ‘Solution-processed vertically stacked complementary organic circuits with inkjet-printed routing’, Adv. Sci., 2016, 3, (5), p. 1500439.
    11. 11)
      • 11. Kudo, K., Takano, T., Yamauchi, H., et al: ‘High-speed operation of step-edge vertical-channel organic transistors with pentacene and 6,13-bis(triisopropyl-silylethynyl) pentacene’, Jpn. J. Appl. Phys., 2010, 49, (4), p. 04DK03.
    12. 12)
      • 12. Raghuwanshi, V., Bharti, D., Tiwari, S.P.: ‘Flexible organic field-effect transistors with TIPS-pentacene crystals exhibiting high electrical stability upon bending’, Org. Electron., 2016, 31, pp. 177182.
    13. 13)
      • 13. Kang, M., Hwang, H., Park, W.-T., et al: ‘Ambipolar small-molecule:polymer blend semiconductors for solution-processable organic field-effect transistors’, ACS Appl. Mater. Interfaces, 2017, 9, (3), pp. 26862692.
    14. 14)
      • 14. Wu, C., Wang, W., Song, J.: ‘Solution processed top-gate high-performance organic transistor nonvolatile memory with separated molecular microdomains floating-gate’, IEEE Electron Device Lett., 2017, 38, (5), pp. 641644.
    15. 15)
      • 15. Choi, M.H., Kim, B.S., Jang, J.: ‘High-performance flexible TFT circuits using TIPS pentacene and polymer blend on plastic’, IEEE Electron Device Lett., 2012, 33, (11), pp. 15711573.
    16. 16)
      • 16. Park, S.K., Anthony, J.E., Jackson, T.N.: ‘Solution-processed TIPS-pentacene organic thin-film-transistor circuits’, IEEE Electron Device Lett., 2007, 28, (10), pp. 877879.
    17. 17)
      • 17. Nicolas, Y., Castet, F., Devynck, M., et al: ‘TIPS-triphenodioxazine versus TIPS-pentacene: enhanced electron mobility for n-type organic field-effect transistors’, Org. Electron., 2012, 13, (8), pp. 13921400.
    18. 18)
      • 18. Faraji, S., Danesh, E., Tate, D.J., et al: ‘Cyanoethyl cellulose-based nanocomposite dielectric for low-voltage, solution-processed organic field-effect transistors (OFETs)’, J. Phys. Appl. Phys., 2016, 49, (18), p. 185102.
    19. 19)
      • 19. Mejia, I., Perez, M.R., Kabir, D.L., et al: ‘Enabling hybrid complementary-TFTs with inkjet printed TIPS-pentacene and chemical bath deposited CdS’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 576583.
    20. 20)
      • 20. Bharti, D., Raghuwanshi, V., Varun, I., et al: ‘Photo-response of low voltage flexible TIPS-pentacene organic field-effect transistors’, IEEE Sens. J., 2017, 17, (12), pp. 11.
    21. 21)
      • 21. Gao, W., Kahn, A.: ‘Controlled p doping of the hole-transport molecular material N,N′-diphenyl-N,N′-bis (1-naphthyl)-1,1′-biphenyl-4,4′-diamine with tetrafluorotetracyanoquinodimethane’, J. Appl. Phys., 2003, 94, (1), pp. 359366.
    22. 22)
      • 22. Mäder, S., Haas, T., Kunze, U., et al: ‘Ultrathin metal oxidation for vacuum monitoring device applications’, Phys. Status Solidi A, 2011, 208, (6), pp. 12231228.
    23. 23)
      • 23. Kaschura, F., Fischer, A., Kasemann, D., et al: ‘Controlling morphology: a vertical organic transistor with a self-structured permeable base using the bottom electrode as seed layer’, Appl. Phys. Lett., 2015, 107, (3), p. 33301.
    24. 24)
      • 24. Xu, Z., Li, S.-H., Ma, L., et al: ‘Vertical organic light emitting transistor’, Appl. Phys. Lett., 2007, 91, (9), p. 92911.
    25. 25)
      • 25. Xu, W., Rhee, S.-W.: ‘Compromise of electrical leakage and capacitance density effects: a facile route for high mobility and sharp subthreshold slope in low-voltage operable organic field-effect transistors’, J. Mater. Chem., 2011, 21, (4), pp. 9981004.
    26. 26)
      • 26. Hong, J.-P., Park, A.-Y., Lee, S., et al: ‘Tuning of Ag work functions by self-assembled monolayers of aromatic thiols for an efficient hole injection for solution processed triisopropylsilyl ethynyl pentacene organic thin film transistors’, Appl. Phys. Lett., 2008, 92, (14), p. 143311.
    27. 27)
      • 27. Meyer, J., Hamwi, S., Schmale, S., et al: ‘A strategy towards p-type doping of organic materials with HOMO levels beyond 6 eV using tungsten oxide’, J. Mater. Chem., 2009, 19, (6), p. 702.
    28. 28)
      • 28. Kazim, S., Ramos, F.J., Gao, P., et al: ‘A dopant free linear acene derivative as a hole transport material for perovskite pigmented solar cells’, Energy Env. Sci., 2015, 8, (6), pp. 18161823.
    29. 29)
      • 29. Kumar, M.J., Vishnoi, R., Pandey, P.: ‘Tunnel field-effect transistors (TFET): modelling and simulations’ (John Wiley & Sons Inc., Chichester, 2017, 1st edn.).
    30. 30)
      • 30. Agrawal, K., Gupta, V., Srivastava, R., et al: ‘Metal-CH3NH3PbI3-metal tunnel FET’, IEEE Trans. Electron Devices, 2018, 65, (5), pp. 18.
    31. 31)
      • 31. Sze, S.M., Ng, K.K.: ‘Physics of semiconductor devices’ (John Wiley & Sons, Hoboken, 2007, 3rd edn.).
    32. 32)
      • 32. Agrawal, K., Srivastava, R., Rajput, S.S.: ‘Modeling of organic permeable base transistor based on inverse of transistor efficiency (IC/gm)’, IEEE Trans. Electron Devices, 2017, 64, (8), pp. 33533359.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5173
Loading

Related content

content/journals/10.1049/iet-cds.2018.5173
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address