Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Analytical model for uniaxial strained Si inversion layer electron effective mobility

The electron effective mobility analytical model without empirical parameters is investigated for uniaxial strained Si inversion layer, which can be conveniently applied by device and circuit designers. By one-dimensional inverse transform for the three-dimensional (3D) scattering matrix element along the vertical channel direction, three scattering (coulomb scattering, acoustic phonon scattering and intervalley scattering) rate models are researched. Then, the surface roughness scattering rate is taken into account to calculate the 2D inversion layer electron mobility. Based on the models, the simulations have been carried out by Matlab. The simulation results are in accord with the reference data, and the saturation phenomenon is brought to light.

References

    1. 1)
      • 2. Matthias, S., Martin, J.S., Angelica, D., et al: ‘A patterning-based strain engineering for sub-22 nm node FinFETs’, IEEE Trans. Electron Device Lett., 2014, 35, (3), pp. 300302.
    2. 2)
      • 15. Ando, T., Fowler, A.B., Stern, F.: ‘Electronic properties of two-dimensional systems’, Rev. Mod. Phys., 1982, 54, pp. 437672.
    3. 3)
      • 5. Chatterjee, S., Chattopadhyay, S.: ‘Fraction of insertion of the channel fin as performance booster in strain-engineered p-FinFET devices with insulator-on-silicon substrate’, IEEE Trans. Electron Devices, 2018, 65, (2), pp. 411418.
    4. 4)
      • 16. Takagi, S., Touriumi, A., Iwase, M., et al: ‘On the universality of inversion layer mobility in Si MOSFET's: part II-effects of surface orientation’, IEEE Trans. Electron Devices, 1994, 41, (12), pp. 23632368.
    5. 5)
      • 6. Dubey, S., Kondekar, P.N.: ‘Asymmetrically doped stacked channel strained SOI FinFET’, Superlattices Microstruct., 2017, 102, pp. 7478.
    6. 6)
      • 7. Lizzit, D., Palestri, P., Esseni, D., et al: ‘Analysis of the performance of n-type FinFETs with strained SiGe channel’, IEEE Trans. Electron Devices, 2013, 60, (6), pp. 18841891.
    7. 7)
      • 29. Ungersboeck, E., Sverdlow, V., Kosina, H., et al: ‘Electron inversion layer mobility enhancement by uniaxial stress on (001) and (110) oriented MOSFETs’. Int. Conf. on Simulation of Semiconductor Processes & Devices, California, September 2006, vol. 6, no. 5, pp. 4346.
    8. 8)
      • 28. Gámiz, F., Roldán, J.B., Carceller, J.E., et al: ‘Monte Carlo simulation of remote-Coulomb-scattering-limited mobility in metal-oxide-semiconductor transistors’, Appl. Phys. Lett., 2003, 82, (19), pp. 32513253.
    9. 9)
      • 4. Sung, P.J., Cho, T.C., Hou, F.J., et al: ‘High-Performance uniaxial tensile strained n-channel JL SOI FETs and triangular JL bulk FinFETs for nanoscaled applications’, IEEE Trans. Electron Devices, 2017, 64, (5), pp. 20542060.
    10. 10)
      • 17. Schwarz, S.A., Russek, S.E.: ‘Semi-empirical equations for electron velocity in Si: part II-MOS inversion layers’, IEEE Trans. Electron Devices, 1983, 30, (12), pp. 16341639.
    11. 11)
      • 24. Mark, L.: ‘Fundamentals of carrier transport, 2nd edn’, Meas. Sci. Technol., 2002, 13, p. 230.
    12. 12)
      • 22. Wang, X.Y., Zhang, H.M., Song, J.J., et al: ‘Electron mobility of strained Si/(001) Si1xGex’, Acta Phys. Sin., 2011, 60, (7), pp. 007205-1007205-7.
    13. 13)
      • 25. Manzini, S.: ‘Effect of Coulomb scattering in n type silicon inversion layers’, J. Appl. Phys., 1985, 57, pp. 411415.
    14. 14)
      • 11. Rideau, D., Monsieur, F., Nier, O., et al: ‘Experimental and theoretical investigation of the ‘apparent’ mobility degradation in bulk and UTBB-FDSOI devices: a focus on the near-spacer-region resistance’. Int. Conf. on Simulation of Semiconductor Processes and Devices (SISPAD), Yokohama, Japan, September 2014, pp. 101104.
    15. 15)
      • 23. Guo, C.: ‘Research on interface characteristics of strained silicon MOS’. Thesis, Xidian University, Xi'an, 2011.
    16. 16)
      • 20. Nishida, T., Sah, C.T.: ‘A physically based mobility model for MOSFET numerical simulation’, IEEE Trans. Electron Devices, 1987, 34, (2), pp. 310320.
    17. 17)
      • 14. Sun, Y., Thompson, S.E., Nishida, T.: ‘Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors’, J. Appl. Phys., 2007, 101, pp. 104503-1104503-22.
    18. 18)
      • 21. Potbhare, S., Pennington, G., Goldsman, N., et al: ‘Characterization of 4H-SiC MOSFET interface trap charge density using a first principles Coulomb scattering mobility model and device simulation’. Int. Conf. on Semiconductor Processes & Devices., Tokyo, Japan, September 2005, pp. 9598.
    19. 19)
      • 9. Ando, T., Hashemi, P., Bruley, J., et al: ‘High mobility high-ge-content SiGe PMOSFETs using Al2O3/HfO2 stacks with in-situ O3 treatment’, IEEE Electron Device Lett., 2017, 38, (3), pp. 303305.
    20. 20)
      • 27. Takagi, S., Hoyt, J.L., Welser, J.J., et al: ‘Comparative study of phonon-limited mobility of two-dimensional electrons in strained and unstrained Si metal-oxide-semiconductor field-effect transistors’, J. Appl. Phys., 1996, 80, (3), pp. 15671577.
    21. 21)
      • 10. Nier, O., Rideau, D., Cros, A., et al: ‘Effective field and universal mobility in high-k metal gate UTBBFDSOI devices’. IEEE Conf. on Microelectronic Test Structures, Udine, Italy, March 2014, pp. 813.
    22. 22)
      • 1. Hueting, R.J.E., Hemert, T.V., Kaleli, B., et al: ‘On device architectures, subthreshold swing, and power consumption of the piezoelectric field-effect transistor (π-FET)’, IEEE J. Electron Devices Soc., 2015, 3, (3), pp. 149157.
    23. 23)
      • 18. Moon, H.C., Kim, S.J., Shim, T.H., et al: ‘Impact of the top silicon thickness on phonon-limited electron mobility in (110)-oriented ultrathin-body silicon-on-insulator n -metal-oxide-semiconductor field-effect transistors’, J. Appl. Phys., 2007, 102, pp. 063520-1063520-5.
    24. 24)
      • 12. Athanasiou, S., Galy, P., Cristoloveanu, S.: ‘Impact of back plane on the carrier mobility in 28 nm UTBB FDSOI devices, for ESD applications’. Joint Int. EUROSOI Workshop and Int. Conf. on Ultimate Integration on Silicon (EUROSOI-ULIS), Bologna, Italy, January 2015, pp. 317320.
    25. 25)
      • 3. Xie, R., Montanini1, P., Akarvardar, K.A, et al: ‘7 nm FinFET technology featuring EUV patterning and dual strained high mobility channels’. IEEE Electron Devices Meeting, California, USA, December 2016, pp. 2.7.12.7.4.
    26. 26)
      • 8. Rideau, D., Niquet, Y.M., Nier, O., et al: ‘Mobility in high-k metal gate UTBB-FDSOI devices: from NEGF to TCAD perspectives’. IEEE Electron Devices Meeting, Washington, DC, USA, December 2013, pp. 12.5.112.5.4.
    27. 27)
      • 19. Ma, J.L.: ‘Research on energy band structure and carrier mobility of uniaxial strained silicon’ (Xidian University, China, 2012).
    28. 28)
      • 13. Kotlyar, R., Giles, M.D., Matagne, P., et al: ‘Inversion mobility and gate leakage in high-k/metal gate MOSFETs’. IEDM Technical Digest. IEEE Int. Electron Devices Meeting, San Francisco, CA, USA, 2004, pp. 391394.
    29. 29)
      • 26. Jungemann, C., Meinerzhagen, B., Eller, M.: ‘On the number of fast interface states of standard CMOS technologies’, IEEE Electron Device Lett., 1999, 20, (6), pp. 283285.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5170
Loading

Related content

content/journals/10.1049/iet-cds.2018.5170
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address