http://iet.metastore.ingenta.com
1887

Design optimisation procedure for digital mismatch compensation in latch comparators

Design optimisation procedure for digital mismatch compensation in latch comparators

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Digital calibration schemes generally allow for high-speed operation and reduced power consumption at the price of lower accuracy compared with their analogue counterparts. However, in dynamic comparators, when exceeding 4 or 5 bits, any resolution increase will be progressively traded against the circuit parameters. This study presents a three-step design procedure to optimise the comparator performance for a given N. First, a new configuration of the latch comparator has allowed optimising the comparison speed in terms of N. Second, the calibration scheme has been reduced to a simple digital sequencer to perform a progressive capacitive offset trimming. Third, the sequencer automatic increment has been programmed to stop at optimal operation to achieve the best calibration accuracy. The proposed method has then been applied to design a latch comparator with 7 bit calibration control in a commercially available 0.18 µm complementary metal–oxide–semiconductor technology. Post-layout statistical simulations have shown that the circuit can achieve up to 5.9 bit calibration resolution without altering the comparator performances.

References

    1. 1)
      • 1. Bekal, A., Mathyarasa, B., Goswami, M., et al: ‘Six-bit, reusable comparator stage-based asynchronous binary-search SAR ADC using smart switching network’, IET Circuits Devices Syst., 2018, 12, (1), pp. 124131.
    2. 2)
      • 2. Zhu, Z., Qiu, Z., Shen, Y., et al: ‘A 2.67 fJ/c.-s. 27.8 kS/s 0.35 V 10 bit successive approximation register analogue-to-digital converter in 65 nm complementary metal oxide semiconductor’, IET Circuits Devices Syst., 2014, 8, (6), pp. 427434.
    3. 3)
      • 3. Ginés, A.J., Peralias, E., Rueda, A.: ‘Background digital calibration of comparator offsets in pipeline ADCs’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (7), pp. 13451349.
    4. 4)
      • 4. Wicht, B., Nirschl, T., Schmitt-Landsiedel, D.: ‘Yield and speed optimization of a latch-type voltage sense amplifier’, IEEE J. Solid-State Circuits, 2004, 39, (7), pp. 11481158.
    5. 5)
      • 5. Goel, A., Sharma, R.K., Gupta, A.K.: ‘Process variations aware area efficient negative bit-line voltage scheme for improving write ability of SRAM in nanometer technologies’, IET Circuits Devices Syst., 2012, 6, (1), pp. 4551.
    6. 6)
      • 6. Cheng, W., Chung, Y.: ‘Bit-area efficient embedded pseudo-SRAM utilising dual-threshold hybrid 2 T gain cell’, IET Circuits Devices Syst., 2014, 8, (2), pp. 107117.
    7. 7)
      • 7. Park, S., Flynn, M.P.: ‘A regenerative comparator structure with integrated inductors’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2006, 53, (8), pp. 17041711.
    8. 8)
      • 8. Woo, S.H., Kang, H., Park, K., et al: ‘Offset voltage estimation model for latch-type sense amplifiers’, IET Circuits Devices Syst., 2010, 4, (6), pp. 503513.
    9. 9)
      • 9. Lu, J., Holleman, J.: ‘A low-power high-precision comparator with time-domain bulk-tuned offset cancellation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (5), pp. 11581167.
    10. 10)
      • 10. Shapero, S., Hasler, P.: ‘Mismatch characterization and calibration for accurate and automated analog design’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (3), pp. 548556.
    11. 11)
      • 11. Lee, M.J.E., Dally, W., Chiang, P.: ‘A 90 mW 4 Gb/s equalized I/O circuit with input offset cancellation’. IEEE Int. Solid-State Circuits Conf. (ISSCC Digest of Technical Papers), San Francisco, CA, USA, February 2000, pp. 252253.
    12. 12)
      • 12. Ginés, A.J., Peralias, E., Aledo, C., et al: ‘Power optimization and stage op-amp linearity relaxation in pipeline ADCs with digital comparator offset calibration’. Design of Circuits and Integrated Systems (DCIS), Madrid, Spain, February 2014, pp. 16.
    13. 13)
      • 13. Yao, J., Liu, J., Lee, H.: ‘Bulk voltage trimming offset calibration for high-speed flash ADCs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2010, 57, (2), pp. 110114.
    14. 14)
      • 14. Nuzzo, P., Van der Plas, G., De Bernardinis, R., et al: ‘A 10.6 mW/0.8 pJ power-scalable 1 GS/s 4b ADC in 0.18/spl mu/m CMOS with 5.8 GHz ERBW’. Design Automation Conf. (ACM/IEEE), San Francisco, CA, USA, July 2006, pp. 873878.
    15. 15)
      • 15. Chen, D.G., Bermak, A.: ‘A low-power dynamic comparator with digital calibration for reduced offset mismatch’. IEEE Int. Symp. Circuits and Systems (Circuits and Systems (ISCAS)), Seoul, Korea (South), August 2012, pp. 12831286.
    16. 16)
      • 16. Nikoozadeh, A., Murmann, B.: ‘An analysis of latch comparator offset due to load capacitor mismatch’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (12), pp. 13981402.
    17. 17)
      • 17. Tao, Y., Hierlemann, A., Lian, Y.: ‘A frequency-domain analysis of latch comparator offset due to load capacitor mismatch’, IEEE Trans. Circuits Syst. II, Express Briefs, 2015, 62, (6), pp. 527532.
    18. 18)
      • 18. Rabuske, T., Rabuske, F., Fernandes, J., et al: ‘An 8 bit 0.35 V 5.04 fJ/conversion-step SAR ADC with background self-calibration of comparator offset’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2015, 23, (7), pp. 13011307.
    19. 19)
      • 19. Kobayashi, T., Nogami, K., Shirotori, T., et al: ‘A current-controlled latch sense amplifier and a static power-saving input buffer for low-power architecture’, IEEE J. Solid-State Circuits, 1993, 28, (4), pp. 523527.
    20. 20)
      • 20. Figueiredo, P.M., Vital, J.C.: ‘Kickback noise reduction techniques for CMOS latched comparators’, IEEE Trans. Circuits Syst. II, Express Briefs, 2006, 53, (7), pp. 541545.
    21. 21)
      • 21. Khanfir, L., Mouïne, J.: ‘Systematic hysteresis analysis for dynamic comparators’, J. Circuits Syst. Comput., 2019, 28, (6). Available at https://doi.org/10.1142/S0218126619501007.
    22. 22)
      • 22. Yoshioka, M., Ishikawa, K., Takayama, T., et al: ‘A 10 b 50 MS/s 820 µW SAR ADC with on-chip digital calibration’, IEEE Trans. Biomed. Circuits Syst., 2010, 4, (6), pp. 410416.
    23. 23)
      • 23. Wood Chiang, S.H.: ‘Comparator offset calibration using unbalanced clocks for high speed and high power efficiency’, Electron. Lett., 2016, 52, (14), pp. 12061207.
    24. 24)
      • 24. Amaya, A., Ardila, J., Roa, E.: ‘A digital offset reduction method for dynamic comparators based on phase measurement’. IEEE Computer Society Annual Symp. VLSI, Bochum, Germany, July 2017, pp. 661664.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5153
Loading

Related content

content/journals/10.1049/iet-cds.2018.5153
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address