access icon free Fully-differential flipped-source-follower low-pass analogue filter in CMOS 28 nm bulk

This study presents a novel low-pass continuous-time filter based on the voltage flipped-source-follower (SF). The filter efficiently operates in CMOS 28 nm and improves the SF filters state-of-the-art thanks to a dedicated circuit that operates in fully-differential fashion (instead of the pseudo-differential typically used in state-of-the-art SF filters) with a dedicated Common-Mode-Feedback circuit. Thus this work extends the application of the SF filtering stages to the nm-range technologies where threshold voltage (V TH) is only two times lower than the supply voltage (V DD) for what regards standard-process MOS transistors. In order to validate the design concept, the proposed filter has been designed in CMOS 28 nm technology. Extensive simulation results of a 131 MHz −3 dB frequency proof-of-concept second-order filter are proposed. The device consumes 510 µW power from a single 1 V supply-voltage. In-band integrated noise is 160 µVRMS and IIP3 is 19 dBm for 20 and 21 MHz input tones frequencies. Simulation results lead to 166 J−1 figure-of-merit, outperforming the analogue filter state-of-the-art.

Inspec keywords: MOSFET circuits; low-pass filters; continuous time filters; CMOS integrated circuits; circuit feedback

Other keywords: frequency 21.0 MHz; size 28.0 nm; low-pass continuous-time filter; low-pass analogue filter; standard-process MOS transistors; common-mode-feedback circuit; frequency 20.0 MHz; nm-range technologies; frequency 131.0 MHz; second-order filter; CMOS technology; in-band integrated noise; voltage flipped-source-follower; power 510.0 muW; voltage 1.0 V; fully-differential flipped-source-follower

Subjects: Active filters and other active networks; Amplifiers; CMOS integrated circuits; Insulated gate field effect transistors

References

    1. 1)
      • 5. Xu, Y., Leuenberger, S., Venkatachala, P.K., et al: ‘A 0.6 mW 31 MHz 4 th-order low-pass filter with + 29 dBm IIP3 using self-coupled source follower based biquads in 0.18 µm CMOS’. 2016 IEEE Symp. on VLSI Circuits (VLSI-Circuits), 2016.
    2. 2)
      • 6. Xu, Y., Muhlestein, J., Moon, U.K.: ‘A 0.65 mW 20 MHz 5 th-order low-pass filter with + 28.8 dBm IIP3 using source follower coupling’. 2017 IEEE Custom Integrated Circuits Conf. (CICC), 2017.
    3. 3)
      • 13. Baschirotto, A., D'Amico, S., De Matteis, M.: ‘Advances on analog filters for telecommunications’. Advanced Signal Processing, Circuits, and System Design Techniques for Communications, IEEE Int. Symp. on Circuits and Systems, ISCAS 2006, May 2006, pp. 131168.
    4. 4)
      • 12. Oskooei, M.S.S., Masoumi, N., Kamarei, M., et al: ‘A CMOS 4.35-mW 22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX receivers’, IEEE J. Solid-State Circuits, 2011, 46, (6), pp. 13821391.
    5. 5)
      • 16. Ye, L., Liao, H., Shi, C., et al: ‘A 2.3 mA 240-to-500 MHz 6th-order active-RC low-pass filter for ultra-wideband transceiver’. Proc. IEEE Asian Solid State Circuits Conf., A-SSCC 2010, November 2010, pp. 14.
    6. 6)
      • 9. Kousai, S., Hamada, M., Ito, R., et al: ‘A 19.7 MHz, fifth-order active-RC Chebyshev LPF for draft IEEE802.11n with automatic quality-factor tuning scheme’, IEEE J. Solid-State Circuits, 2007, 42, (11), pp. 23262337.
    7. 7)
      • 14. Harrison, J., Weste, N.: ‘A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, February 2003, pp. 132483.
    8. 8)
      • 4. De Matteis, M., Baschirotto, A.: ‘A biquadratic cell based on the flipped-source-follower circuit’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (8), pp. 867871.
    9. 9)
      • 10. Vasilopoulos, A., Vitzilaios, G., Theodoratos, G., et al: ‘A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR’, IEEE J. Solid-State Circuits, 2006, 41, (9), pp. 19972008.
    10. 10)
      • 3. De Matteis, M., Pezzotta, A., D'Amico, S., et al: ‘A 33 MHz 70 dB-SNR super-source-follower-based low-pass analog filter’, IEEE J. Solid-State Circuits, 2015, 50, (7), pp. 15161524.
    11. 11)
      • 7. Wambacq, P., Giannini, V., Scheir, K., et al: ‘A 5th-order 880 MHz/1.76 GHz active low-pass filter for 60 GHz communications in 40 nm digital CMOS’. European Solid-State Circuits Conf. (ESSCIRC), Seville, Spain, 2010, pp. 350353.
    12. 12)
      • 11. Mobarak, M.: ‘Attenuation-predistortion linearization of CMOS OTA with digital correction of process variations in OTA-C filter’, IEEE J. Solid-State Circuits, 2010, 45, (2), pp. 351367.
    13. 13)
      • 15. Amir-Aslanzadeh, H., Pankratz, E.J., Sanchez-Sinencio, E.: ‘A 1-V 31 dBm IIP3, reconfigurable, continuously tunable, power-adjustable active-RC LPF’, IEEE J. Solid-State Circuits, 2009, 44, (2), pp. 495508.
    14. 14)
      • 1. Lee, I.-Y., Im, D., Ko, J., et al: ‘A 50–450 MHz tunable RF biquad filter based on a wideband source follower with > 26 dBm IIP3, + 12 dBm P1dB and 15dB noise figure’, IEEE J. Solid-State Circuits, 2015, 50, (10), pp. 22942305.
    15. 15)
      • 8. Thyagarajan, S.V., Pavan, S., Sankar, P.: ‘Active-RC filters using the Gm-assisted OTA-RC technique’, IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 15221533.
    16. 16)
      • 2. D'Amico, S., Conta, M., Baschirotto, A., et al: ‘A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR’, IEEE J. Solid-State Circuits, 2006, 41, (12), pp. 27132719.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5151
Loading

Related content

content/journals/10.1049/iet-cds.2018.5151
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading