Fully-differential flipped-source-follower low-pass analogue filter in CMOS 28 nm bulk

Fully-differential flipped-source-follower low-pass analogue filter in CMOS 28 nm bulk

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a novel low-pass continuous-time filter based on the voltage flipped-source-follower (SF). The filter efficiently operates in CMOS 28 nm and improves the SF filters state-of-the-art thanks to a dedicated circuit that operates in fully-differential fashion (instead of the pseudo-differential typically used in state-of-the-art SF filters) with a dedicated Common-Mode-Feedback circuit. Thus this work extends the application of the SF filtering stages to the nm-range technologies where threshold voltage (V TH) is only two times lower than the supply voltage (V DD) for what regards standard-process MOS transistors. In order to validate the design concept, the proposed filter has been designed in CMOS 28 nm technology. Extensive simulation results of a 131 MHz −3 dB frequency proof-of-concept second-order filter are proposed. The device consumes 510 µW power from a single 1 V supply-voltage. In-band integrated noise is 160 µVRMS and IIP3 is 19 dBm for 20 and 21 MHz input tones frequencies. Simulation results lead to 166 J−1 figure-of-merit, outperforming the analogue filter state-of-the-art.


    1. 1)
      • 1. Lee, I.-Y., Im, D., Ko, J., et al: ‘A 50–450 MHz tunable RF biquad filter based on a wideband source follower with > 26 dBm IIP3, + 12 dBm P1dB and 15dB noise figure’, IEEE J. Solid-State Circuits, 2015, 50, (10), pp. 22942305.
    2. 2)
      • 2. D'Amico, S., Conta, M., Baschirotto, A., et al: ‘A 4.1-mW 10-MHz fourth-order source-follower-based continuous-time filter with 79-dB DR’, IEEE J. Solid-State Circuits, 2006, 41, (12), pp. 27132719.
    3. 3)
      • 3. De Matteis, M., Pezzotta, A., D'Amico, S., et al: ‘A 33 MHz 70 dB-SNR super-source-follower-based low-pass analog filter’, IEEE J. Solid-State Circuits, 2015, 50, (7), pp. 15161524.
    4. 4)
      • 4. De Matteis, M., Baschirotto, A.: ‘A biquadratic cell based on the flipped-source-follower circuit’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (8), pp. 867871.
    5. 5)
      • 5. Xu, Y., Leuenberger, S., Venkatachala, P.K., et al: ‘A 0.6 mW 31 MHz 4 th-order low-pass filter with + 29 dBm IIP3 using self-coupled source follower based biquads in 0.18 µm CMOS’. 2016 IEEE Symp. on VLSI Circuits (VLSI-Circuits), 2016.
    6. 6)
      • 6. Xu, Y., Muhlestein, J., Moon, U.K.: ‘A 0.65 mW 20 MHz 5 th-order low-pass filter with + 28.8 dBm IIP3 using source follower coupling’. 2017 IEEE Custom Integrated Circuits Conf. (CICC), 2017.
    7. 7)
      • 7. Wambacq, P., Giannini, V., Scheir, K., et al: ‘A 5th-order 880 MHz/1.76 GHz active low-pass filter for 60 GHz communications in 40 nm digital CMOS’. European Solid-State Circuits Conf. (ESSCIRC), Seville, Spain, 2010, pp. 350353.
    8. 8)
      • 8. Thyagarajan, S.V., Pavan, S., Sankar, P.: ‘Active-RC filters using the Gm-assisted OTA-RC technique’, IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 15221533.
    9. 9)
      • 9. Kousai, S., Hamada, M., Ito, R., et al: ‘A 19.7 MHz, fifth-order active-RC Chebyshev LPF for draft IEEE802.11n with automatic quality-factor tuning scheme’, IEEE J. Solid-State Circuits, 2007, 42, (11), pp. 23262337.
    10. 10)
      • 10. Vasilopoulos, A., Vitzilaios, G., Theodoratos, G., et al: ‘A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR’, IEEE J. Solid-State Circuits, 2006, 41, (9), pp. 19972008.
    11. 11)
      • 11. Mobarak, M.: ‘Attenuation-predistortion linearization of CMOS OTA with digital correction of process variations in OTA-C filter’, IEEE J. Solid-State Circuits, 2010, 45, (2), pp. 351367.
    12. 12)
      • 12. Oskooei, M.S.S., Masoumi, N., Kamarei, M., et al: ‘A CMOS 4.35-mW 22-dBm IIP3 continuously tunable channel select filter for WLAN/WiMAX receivers’, IEEE J. Solid-State Circuits, 2011, 46, (6), pp. 13821391.
    13. 13)
      • 13. Baschirotto, A., D'Amico, S., De Matteis, M.: ‘Advances on analog filters for telecommunications’. Advanced Signal Processing, Circuits, and System Design Techniques for Communications, IEEE Int. Symp. on Circuits and Systems, ISCAS 2006, May 2006, pp. 131168.
    14. 14)
      • 14. Harrison, J., Weste, N.: ‘A 500 MHz CMOS anti-alias filter using feed-forward op-amps with local common-mode feedback’. IEEE Int. Solid-State Circuits Conf. Digest of Technical Papers, February 2003, pp. 132483.
    15. 15)
      • 15. Amir-Aslanzadeh, H., Pankratz, E.J., Sanchez-Sinencio, E.: ‘A 1-V 31 dBm IIP3, reconfigurable, continuously tunable, power-adjustable active-RC LPF’, IEEE J. Solid-State Circuits, 2009, 44, (2), pp. 495508.
    16. 16)
      • 16. Ye, L., Liao, H., Shi, C., et al: ‘A 2.3 mA 240-to-500 MHz 6th-order active-RC low-pass filter for ultra-wideband transceiver’. Proc. IEEE Asian Solid State Circuits Conf., A-SSCC 2010, November 2010, pp. 14.

Related content

This is a required field
Please enter a valid email address