http://iet.metastore.ingenta.com
1887

Low supply voltage and multiphase all-digital crystal-less clock generator

Low supply voltage and multiphase all-digital crystal-less clock generator

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A multiphase all-digital crystal-less clock generator (CLCG) with an interpolating digital controlled oscillator (DCO) that achieves an operating frequency of 500 MHz with 10-phase outputs is proposed. The CLCG adopts a specific temperature coefficient of a time-to-digital convertor (TDC) to create a positive or negative temperature coefficient and compensates for the DCO frequency drift. A time amplifier (TA) can extend the timing resolution of the TDC and reduce the effects of process variations in order to tune the TA gains. The frequency compensator adopts the frequency difference between the ring oscillator and DCO to reduce the frequency drift. The frequency accuracy is 69 ppm/°C from  − 20 to 80°C. The root mean square jitter and output phase noise are 3.86 ps and − 100.36 dBc/Hz at 1 MHz, respectively. The core area of the test chip is 350 × 420 μm2 in a 65-nm CMOS process. At a supply voltage of 0.6 V, the power consumption is 1.8 mW for the 5 Gb/s clocking system.

References

    1. 1)
      • 1. Lu, Y., Yuan, G., Der, L., et al: ‘A ± 0.5% precision on-chip frequency reference with programmable switch array for crystal-less applications,IEEE Trans. Circuits Syst. II, Exp. Briefs, 2013, 60, (10), pp. 642646.
    2. 2)
      • 2. Tokunaga, Y., Sakiyama, S., Matsumoto, A., et al: ‘An on-chip CMOS relaxation oscillator with voltage averaging feedback’, IEEE Solid J.-State Circuits, 2010, 45, (6), pp. 11501158.
    3. 3)
      • 3. Sebastiano, F., Breems, L.J., Makinwa, K.A.A., et al: ‘A Low-voltage mobility-based frequency reference for crystal-less ULP radios’, IEEE Solid J.-State Circuits, 2009, 44, (7), pp. 20022008.
    4. 4)
      • 4. Wang, J., Goh, W.L., Liu, X., et al: ‘A 12.77–MHz 31 ppm/°C on-chip rc relaxation oscillator with digital compensation technique’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2016, 63, (11), pp. 18161824.
    5. 5)
      • 5. Tsubaki, K., Hirose, T., Kuroki, N., et al: ‘A 32.55–kHz, 472–nW, 120 ppm/°C on chip, variation tolerant CMOS relaxation oscillator for a real-time clock application’. Proc. IEEE European Solid-State Circuits Conf., Bucharest, Romania, September 2013, pp. 315318.
    6. 6)
      • 6. Denier, U.: ‘Analysis and design of an ultralow-power CMOS relaxation oscillator’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (8), pp. 19731982.
    7. 7)
      • 7. Zhou, L., Annamalai, M., Koh, J., et al: ‘A crystal-less temperature-independent reconfigurable transmitter targeted for high-temperature wireless acoustic telemetry applications’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2013, 60, (9), pp. 542546.
    8. 8)
      • 8. Tsai, Y.-K., Lu, L.-H.: ‘A 51.3–MHz 21.8–ppm/°C CMOS relaxation oscillator with temperature compensation’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2017, 64, (5), pp. 490494.
    9. 9)
      • 9. Choi, M., Jang, T., Bang, S., et al: ‘A 110 nW resistive frequency locked on-chip oscillator with 34.3 ppm/°C temperature stability for system-on-chip designs’, IEEE J. Solid-State Circuits, 2016, 51, (9), pp. 21062118.
    10. 10)
      • 10. Vijayaraghavan, R., Islam, S.K., Haider, M.R., et al: ‘Wideband injectionlocked frequency divider based on a process and temperature compensated ring oscillator’, IET Circuits Devices Syst., 2009, 3, (5), pp. 259267.
    11. 11)
      • 11. Ueno, K., Asai, T., Amemiya, Y.: ‘A 30–MHz, 90 ppm/°C fully-integrated clock reference generator with frequency-locked loop’. Proc. IEEE European Solid-State Circuits Conf., Athens, Greece, September 2009, pp. 392395.
    12. 12)
      • 12. Shih, Y.-S., Otis, B.: ‘An on-chip tunable frequency generator for crystal-less low-power WBAN radio’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2013, 60, (4), pp. 187191.
    13. 13)
      • 13. Lee, J., Cho, S.: ‘A 10 MHz 80 μW 67 ppm/°C CMOS reference clock oscillator with a temperature compensated feedback loop in 0.18 μm CMOS’. Proc. IEEE Sump. VLSI Circuits, Kyoto, Japan, June 2009, pp. 226227.
    14. 14)
      • 14. Liu, J.-C., Lee, W.-C., Huang, H.-Y., et al: ‘A 0.3–V all digital crystal-less clock generator for energy harvester applications’. Proc. IEEE Asian Solid-State Circuits Conf., Kobe, Japan, December 2012, pp. 117120.
    15. 15)
      • 15. Sung, W.-H., Hsu, S.-Y., Yu, J.-Y., et al: ‘A frequency accuracy enhanced sub-10 uW on-chip clock generator for energy efficient crystal-less wireless biotelemetry application’. Proc. IEEE Symp. VLSI Circuits, Honolulu, HI, USA, June 2010, pp. 115116.
    16. 16)
      • 16. Tu, Y.-H., Liu, J.-C., Cheng, K.-H., et al: ‘A 0.6–V 1.6–GHz 8–phase all digital pll using multi-phase based TDC’, IEICE Electron. Express, 2016, 13, (2), pp. 112.
    17. 17)
      • 17. Huang, H.-Y., Hung, W.-C., Cheng, H.-W., et al: ‘All digital time-to-digital converter with high resolution and wide detect range’, Eng. Lett., 2011, 19, (3), pp. 261264.
    18. 18)
      • 18. Smedt, V.D., Wit, P.D., Vereecken, W., et al: ‘A 66 uW 86 ppm/°C fully-integrated 6 MHz Wienbridge Oscillator with a 172 dB phase noise FOM’, IEEE J. Solid-State Circuits, 2001, 44, (7), pp. 19902001.
    19. 19)
      • 19. Kashmiri, S.M., Pertijs, M.A.P., Makinwa, K.A.A.: ‘A thermal-diffusivity-based frequency reference in standard CMOS with an absolute inaccuracy of ± 0.1% from 55°C to 125°C’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 25102520.
    20. 20)
      • 20. Sebastiano, F., Breems, L.J., Makinwa, K.A.A., et al: ‘A 65–nm CMOS temperature-compensated mobility-based frequency reference for wireless sensor networks’, IEEE J. Solid-State Circuits, 2011, 46, (7), pp. 15441552.
    21. 21)
      • 21. Sundaresan, K., Allen, P.E., Ayazi, F.: ‘Process and temperature compensation in a 7–MHz CMOS clock oscillator’, IEEE J. Solid-State Circuits, 2006, 41, (2), pp. 433442.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5149
Loading

Related content

content/journals/10.1049/iet-cds.2018.5149
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address