http://iet.metastore.ingenta.com
1887

Low leakage domino logic circuit for wide fan-in gates using CNTFET

Low leakage domino logic circuit for wide fan-in gates using CNTFET

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A carbon nanotube field effect transistor (CNTFET) emerged as an alternative to the complementary metal oxide semiconductor (CMOS) for implementing low-power high-speed very-large-scale integration circuits. In this study, the CNTFET technology is discussed that has faster switching speed and high-carrier mobility as compared with the CMOS technology. A new technique ultra-low power dynamic node driven transistor domino logic is proposed for designing low-power domino logic circuits. 2, 4, 8 and 16 input logic gates are simulated using the proposed and existing techniques. Simulation is done on an H-Spice Stanford CNFET 32 nm model at a clock frequency of 200 MHz using the CNTFET technology. The proposed technique shows a maximum power reduction of 57.14% and a maximum delay reduction of 50.24% as compared with the current mirror footed domino logic technique in CNTFET technology. The proposed technique has a maximum power reduction of 96.61% in the CNTFET technology as compared with its counterpart in the CMOS technology for the two-input OR gate. The proposed technique shows a maximum improvement of 1.39× in unity noise gain as compared with the conditional stacked keeper domino logic technique for 16 input OR gates in the CNTFET technology at 200 MHz.

References

    1. 1)
      • 1. Anis, M., Areibi, S., Elmasry, M.: ‘Design and optimization of multi-threshold CMOS (MTCMOS) circuit’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2003, 22, (10), pp. 13241342.
    2. 2)
      • 2. Roy, K., Mukhopadhyay, S., Mahmoodi, H.: ‘Leakage current mechanisms and leakage reduction techniques in deep-submicron CMOS circuits’, Proc. IEEE, 2003, 91, (2), pp. 305327.
    3. 3)
      • 3. Dadashi, A., Mirmotahari, O., Berg, Y.: ‘NP domino, ultra-Low-voltage, high-speed, dual-rail, CMOS NOR gates’, Circuits Syst., 2016, 7, (8), pp. 19161926.
    4. 4)
      • 4. Peiravi, A., Asyaei, M.: ‘Robust low leakage controlled keeper by current-comparison domino for wide fan-in gates, integration’, VLSI J., 2012, 45, (1), pp. 2232.
    5. 5)
      • 5. Moaiyeri, M. H., Razi, F.: ‘Performance analysis and enhancement of 10-nm GAA CNTFET-based circuits in the presence of CNT-metal contact resistance’, J. Comput. Electron., 2017, 16, (2), pp. 240252.
    6. 6)
      • 6. Kaushik, B. K., Majumder, M.K.: ‘Carbon nanotube-based VLSI interconnects’, Springer Briefs in Applied Sciences and Technology, (Springer, India, 2015), ch. 2, pp. 1737.
    7. 7)
      • 7. Javey, A., Kong, J.: ‘Carbon nanotube electronics’ in ‘Integrated circuits and Systems’ (Springer, Springer, USA, 2009), pp 120ISBN 978-0-387-69285-2.
    8. 8)
      • 8. Qin, L.C.: ‘Determination of the chiral indices (n,m) of carbon nanotubes by electron diffraction’, Phys. Chem. Chem. Phys., 2007, 9, (1), pp. 3148.
    9. 9)
      • 9. Bozorgmehr, A., Moaiyeri, M. H., Navi, K., et al: ‘Ultra-efficient fuzzy min/max circuits based on carbon nanotube FETs’, IEEE Trans. Fuzzy Syst., 2018, 26, (2), pp. 10731078.
    10. 10)
      • 10. Wang, X., Qunqing, L., Jing, X., et al: ‘Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates’, Nano Lett., 2009, 9, (9), pp. 31373141.
    11. 11)
      • 11. Aravind, S., Shravan, S., Shrijan, S., et al: ‘Simulation of carbon nanotube field effect transistors using NEGF’. IOP Conf. Series: Materials Science and Engineering, IconAMMA, 2016, Bangalore, India, 14–16 July 2016.
    12. 12)
      • 12. Peng, L.M., Zhang, Z., Wang, S.: ‘Carbon nanotube electronics: recent advances’, Mater. Today, 2014, 17, (9), pp. 433442.
    13. 13)
      • 13. Meter, J.V.: ‘Characterization of Schottky barrier carbon nanotube transistors and their applications to digital circuit design’ (Massachusetts Institute of Technology, Cambridge, MA, USA, 1979). Available at http://hdl.handle.net/1721.1/28489.
    14. 14)
      • 14. Moghaddam, M., Moaiyeri, M. H., Eshghi, M.: ‘Design and evaluation of an efficient Schmitt trigger-based hardened latch in CNTFET technology’, IEEE Trans. Device Mater. Reliab., 2017, 17, (1), pp. 267277.
    15. 15)
      • 15. Moaiyeri, M. H., Doostaregan, A., Navi, K.: ‘Design of energy-efficient and robust ternary circuits for nanotechnology’, IET Circuits Devices Syst., 2011, 5, (4), pp. 285296.
    16. 16)
      • 16. Deng, J.: ‘A compact SPICE model for carbon-nanotube field-effect transistors including non-idealities and its application—part I: model of the intrinsic channel region’, IEEE Trans. Electron Devices, 2007, 54, (12), pp. 31863194.
    17. 17)
      • 17. Model File: Available at https://nano.stanford.edu/stanford-cnfet-model-hspice.
    18. 18)
      • 18. Nan, L., XiaoXin, C., Kai, L., et al: ‘Low power adiabatic logic based on FinFETs’, Sci. China, 2014, 57, (2), pp. 113.
    19. 19)
      • 19. Muralidharan, J., Manimegalai, P.: ‘Current comparison domino based CHSK domino logic technique for rapid progression and Low power alleviation’, Int. J. Electr. Comput. Eng., 2017, 7, (5), pp. 24682473.
    20. 20)
      • 20. Mahmoodi, H., Roy, K.: ‘Diode footed domino: A leakage tolerant high fan-in dynamic circuit design style’, IEEE Trans. Circuits Syst., 2004, 51, (3), pp. 495503.
    21. 21)
      • 21. Cheng, C. H., Chang, S. C., Wang, J. S., et al: ‘Charge sharing fault detection for CMOS domino logic circuits’. Int. Symp. on Defect and Fault Tolerance in VLSI Systems, DFT'99, Albuquerque, New Mexico, 1–3 November 1999.
    22. 22)
      • 22. Gupta, T.K, Khare, K.: ‘Lector with footed-diode inverter: A technique for leakage reduction in domino circuits’, Circ. Syst. Signal Process., 2013, 32, (6), pp. 27072722.
    23. 23)
      • 23. Gupta, T.K., Pandey, A.K., Meena, O.P.: ‘Analysis and design of lector-based dual-Vt domino logic with reduced leakage current’, Circuit World, 2017, 43, (3), pp. 97104.
    24. 24)
      • 24. Moradi, F., Cao, T. V., Vatajelu, E. I., et al: ‘Domino logic designs for high-performance and leakage tolerant applications’, Integr. VLSI J., 2013, 46, (3), pp. 247254.
    25. 25)
      • 25. Peiravi, A., Asyaei, M.: ‘Current-comparison-based domino: new low-leakage high-speed domino circuit for wide fan-in gates’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2013, 21, (5), pp. 934943.
    26. 26)
      • 26. Gong, N., Guo, B., Lou, J., et al: ‘Analysis and optimization of leakage current characteristics in sub-65 nm dual Vt footed domino circuits’, Microelectron. J., 2008, 39, pp. 11491155.
    27. 27)
      • 27. Moradi, F., Peiravi, A., Mahmoodi, H.: ‘A new leakage-tolerant design for high fan-in domino gates’. Proc. 16th Int. Conf. on Microelectronics, 2004, Tunisia, 6–8 December 2004.
    28. 28)
      • 28. Moradi, F., Mahmoodi, H., Peiravi, A.: ‘A high speed and leakage-tolerant domino logic for high fan-in gates’. Proc. 15th ACM Great Lakes Symp. on VLSI (GLSVLSI), 2005, Chicago, IL, USA, 17–19 April 2005.
    29. 29)
      • 29. Peiravi, A., Moradi, F., Wisland, D. T.: ‘Leakage tolerant, noise immune domino logic for circuit design in the ultra deep submicron CMOS technology for high fan-in gates’, J. Appl. Sci., 2009, 9, (2), pp. 392396.
    30. 30)
      • 30. Shanbhag, N., Soumyanath, K., Martin, S.: ‘Reliable low- power design in the presence of deep submicron noise’. Proc. Int. Symp. on Low Power Electronics and Design, 2000, Rapallo, Italy, 25–27 July 2000.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5135
Loading

Related content

content/journals/10.1049/iet-cds.2018.5135
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address