Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free On boundary analysis for derivative of driving point impedance functions and its circuit applications

In this study, a boundary analysis is carried out for the derivative of driving point impedance (DPI) functions, which is mainly used for the synthesis of networks containing resistor-inductor, resistor–capacitor and resistor–inductor–capacitor circuits. It is known that DPI function, , is an analytic function defined on the right half of the s-plane. In this study, the authors present four theorems using the modulus of the derivative of DPI function, , by assuming the function is also analytic at the boundary point on the imaginary axis and finally, the sharpness of the inequalities obtained in the presented theorems are proved. It is also shown that simple inductor–capacitor tank circuits and higher-order filters are synthesised using the unique DPI functions obtained in each theorem.

References

    1. 1)
      • 1. Reza, F.M.: ‘A bound for the derivative of positive real functions’, SIAM Rev., 1962, 4, (1), pp. 4042.
    2. 2)
      • 11. Van Der Pol, B.: ‘A new theorem on electrical networks’, Physica, 1937, 4, (7), pp. 585589.
    3. 3)
      • 4. Mukhtar, F., Kuznetsov, Y., Russer, P.: ‘Network modelling with Brune's synthesis’, Adv. Radio Sci., 2011, 9, pp. 9194.
    4. 4)
      • 8. Şengül, M.: ‘Foster impedance data modeling via singly terminated LC ladder networks’, Turkish J. Electr. Eng. Comput. Sci., 2013, 21, (3), pp. 785792.
    5. 5)
      • 9. Wunsch, A.D., Hu, S.P.: ‘A closed-form expression for the driving-point impedance of the small inverted L antenna’, IEEE Trans. Antennas Propag., 1996, 44, (2), pp. 236242.
    6. 6)
      • 3. Sharma, A., Soni1, T.: ‘A review on passive network synthesis using Cauer form’, World J. Wirel. Devices Eng., 2017, 1, (1), pp. 3946.
    7. 7)
      • 20. Dubinin, V.N.: ‘The Schwarz inequality on the boundary for functions regular in the disc’, J. Math. Sci., 2004, 122, (6), pp. 36233629.
    8. 8)
      • 22. Örnek, B.N.: ‘Sharpened forms of the Schwarz lemma on the boundary’, Bull. Korean Math. Soc., 2013, 50, (6), pp. 20532059.
    9. 9)
      • 17. Huang, T.: ‘Some mapping properties of RC and RL driving-point impedance functions’, IEEE Trans. Circuit Theory, 1965, 12, (2), pp. 257259.
    10. 10)
      • 7. Ochoa, A.: ‘Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis’, in ‘Feedback in analog circuits’ (Springer International Publishing, Switzerland, 2016), pp. 1334.
    11. 11)
      • 16. Reza, F.M.: ‘Schwarz's Lemma and linear passive systems’, Proc. IRE, 1961, 49, (2), pp. 1723.
    12. 12)
      • 10. Hazony, D.: ‘Elements of network synthesis’ (Reinhold Pub. Corp., New York, USA, 1963).
    13. 13)
      • 5. Hu, J.S., Tsai, M.C.: ‘Robustness analysis of a practical impedance control system’, IFAC Proc. Volumes, 2004, 37, (11), pp. 725730.
    14. 14)
      • 12. Krueger, R.J., Brown, D.P.: ‘Positive real derivatives of driving point functions’, J. Franklin Inst., 1969, 287, (1), pp. 5160.
    15. 15)
      • 6. Khilari, S.S.: ‘Transfer function and impulse response synthesis using classical techniques’. MSc thesis, University of Massachusetts, Amherst, 2007.
    16. 16)
      • 14. Richards, P.I.: ‘A special class of functions with positive real part in a half-plane’, Duke Math. J., 1947, 14, (3), pp. 777789.
    17. 17)
      • 15. Reza, F.M.: ‘Schwarz Lemma for n-ports’, J. Franklin Inst., 1984, 317, (2), pp. 5771.
    18. 18)
      • 2. Saleh Tavazoei, M.: ‘Passively realizable impedance functions by using two fractional elements and some resistors’, IET Circuits Devices Syst., 2017, 12, (3), pp. 280285, doi:10.1049/iet-cds.2017.0342.
    19. 19)
      • 21. Aliyev Azeroğlu, T., Örnek, B.N.: ‘A refined Schwarz inequality on the boundary’, Complex Variables and Elliptic Equations, 2013, 58, (4), pp. 571577.
    20. 20)
      • 23. Boas, H.P.: ‘Julius and Julia: mastering the art of the Schwarz lemma’, Am. Math. Mon., 2010, 117, (9), pp. 770785.
    21. 21)
      • 13. Reza, F.M.: ‘On the Schlicht behavior of certain impedance functions’, IRE Trans. Circuit Theory, 1962, 9, (3), pp. 231232.
    22. 22)
      • 18. Golusin, G.M.: ‘Geometric theory of functions of complex variable [in Russian]’ (Moscow, Moscow, Russia, 1966, 2nd edn.). ISBN: 978-0-8218-1576-2.
    23. 23)
      • 19. Osserman, R.: ‘A sharp Schwarz inequality on the boundary’, Proc. Am. Math. Soc., 2000, 128, (12), pp. 35133517.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5123
Loading

Related content

content/journals/10.1049/iet-cds.2018.5123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address