http://iet.metastore.ingenta.com
1887

On boundary analysis for derivative of driving point impedance functions and its circuit applications

On boundary analysis for derivative of driving point impedance functions and its circuit applications

For access to this article, please select a purchase option:

Buy eFirst article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, a boundary analysis is carried out for the derivative of driving point impedance (DPI) functions, which is mainly used for the synthesis of networks containing resistor-inductor, resistor–capacitor and resistor–inductor–capacitor circuits. It is known that DPI function, , is an analytic function defined on the right half of the s-plane. In this study, the authors present four theorems using the modulus of the derivative of DPI function, , by assuming the function is also analytic at the boundary point on the imaginary axis and finally, the sharpness of the inequalities obtained in the presented theorems are proved. It is also shown that simple inductor–capacitor tank circuits and higher-order filters are synthesised using the unique DPI functions obtained in each theorem.

References

    1. 1)
      • 1. Reza, F.M.: ‘A bound for the derivative of positive real functions’, SIAM Rev., 1962, 4, (1), pp. 4042.
    2. 2)
      • 2. Saleh Tavazoei, M.: ‘Passively realizable impedance functions by using two fractional elements and some resistors’, IET Circuits Devices Syst., 2017, 12, (3), pp. 280285, doi:10.1049/iet-cds.2017.0342.
    3. 3)
      • 3. Sharma, A., Soni1, T.: ‘A review on passive network synthesis using Cauer form’, World J. Wirel. Devices Eng., 2017, 1, (1), pp. 3946.
    4. 4)
      • 4. Mukhtar, F., Kuznetsov, Y., Russer, P.: ‘Network modelling with Brune's synthesis’, Adv. Radio Sci., 2011, 9, pp. 9194.
    5. 5)
      • 5. Hu, J.S., Tsai, M.C.: ‘Robustness analysis of a practical impedance control system’, IFAC Proc. Volumes, 2004, 37, (11), pp. 725730.
    6. 6)
      • 6. Khilari, S.S.: ‘Transfer function and impulse response synthesis using classical techniques’. MSc thesis, University of Massachusetts, Amherst, 2007.
    7. 7)
      • 7. Ochoa, A.: ‘Driving point impedance and signal flow graph basics: a systematic approach to circuit analysis’, in ‘Feedback in analog circuits’ (Springer International Publishing, Switzerland, 2016), pp. 1334.
    8. 8)
      • 8. Şengül, M.: ‘Foster impedance data modeling via singly terminated LC ladder networks’, Turkish J. Electr. Eng. Comput. Sci., 2013, 21, (3), pp. 785792.
    9. 9)
      • 9. Wunsch, A.D., Hu, S.P.: ‘A closed-form expression for the driving-point impedance of the small inverted L antenna’, IEEE Trans. Antennas Propag., 1996, 44, (2), pp. 236242.
    10. 10)
      • 10. Hazony, D.: ‘Elements of network synthesis’ (Reinhold Pub. Corp., New York, USA, 1963).
    11. 11)
      • 11. Van Der Pol, B.: ‘A new theorem on electrical networks’, Physica, 1937, 4, (7), pp. 585589.
    12. 12)
      • 12. Krueger, R.J., Brown, D.P.: ‘Positive real derivatives of driving point functions’, J. Franklin Inst., 1969, 287, (1), pp. 5160.
    13. 13)
      • 13. Reza, F.M.: ‘On the Schlicht behavior of certain impedance functions’, IRE Trans. Circuit Theory, 1962, 9, (3), pp. 231232.
    14. 14)
      • 14. Richards, P.I.: ‘A special class of functions with positive real part in a half-plane’, Duke Math. J., 1947, 14, (3), pp. 777789.
    15. 15)
      • 15. Reza, F.M.: ‘Schwarz Lemma for n-ports’, J. Franklin Inst., 1984, 317, (2), pp. 5771.
    16. 16)
      • 16. Reza, F.M.: ‘Schwarz's Lemma and linear passive systems’, Proc. IRE, 1961, 49, (2), pp. 1723.
    17. 17)
      • 17. Huang, T.: ‘Some mapping properties of RC and RL driving-point impedance functions’, IEEE Trans. Circuit Theory, 1965, 12, (2), pp. 257259.
    18. 18)
      • 18. Golusin, G.M.: ‘Geometric theory of functions of complex variable [in Russian]’ (Moscow, Moscow, Russia, 1966, 2nd edn.). ISBN: 978-0-8218-1576-2.
    19. 19)
      • 19. Osserman, R.: ‘A sharp Schwarz inequality on the boundary’, Proc. Am. Math. Soc., 2000, 128, (12), pp. 35133517.
    20. 20)
      • 20. Dubinin, V.N.: ‘The Schwarz inequality on the boundary for functions regular in the disc’, J. Math. Sci., 2004, 122, (6), pp. 36233629.
    21. 21)
      • 21. Aliyev Azeroğlu, T., Örnek, B.N.: ‘A refined Schwarz inequality on the boundary’, Complex Variables and Elliptic Equations, 2013, 58, (4), pp. 571577.
    22. 22)
      • 22. Örnek, B.N.: ‘Sharpened forms of the Schwarz lemma on the boundary’, Bull. Korean Math. Soc., 2013, 50, (6), pp. 20532059.
    23. 23)
      • 23. Boas, H.P.: ‘Julius and Julia: mastering the art of the Schwarz lemma’, Am. Math. Mon., 2010, 117, (9), pp. 770785.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5123
Loading

Related content

content/journals/10.1049/iet-cds.2018.5123
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address