access icon free High-throughput 2 bit low-density parity-check forward error correction for C-RAN optical fronthaul based on a hard-decision algorithm

In this study, the authors demonstrate the potentiality of the integration of low-density parity-check codes with a full self-seeded optical architecture using advanced optical and electrical models. This study aims to show the performances that one can expect from this association in the context of cloud radio access network (C-RAN). Different decoding algorithms have been studied over additive white Gaussian noise channel. Hard-decision algorithm of Gradient descent bit flipping (GDBF) is finally chosen since it represents the best trade-off between the complexity of decoder and the performance. Furthermore, the authors show that a small 2-bit quantification is sufficient, which can increase the data rate and decrease the latency of decoder in comparison with a more complex ADs. The same performance of floating point GDBF is achieved by using the new algorithm Balanced Weighted GDBF (BWGDBF) with 2-bit quantification. Finally, the authors have succeeded to implement BWGDBF algorithm on the FPGA Spartan 6 xc6slx16. The proposed system exhibits very good performances since it is able to achieve 2.5 Gb/s throughput in the C-RAN context.

Inspec keywords: analogue-digital conversion; decoding; gradient methods; parity check codes; forward error correction; radio access networks; AWGN channels

Other keywords: additive white Gaussian noise channel; GDBF; word length 2.0 bit; high-throughput 2 bit low-density parity-check forward error correction; cloud radio access network; bit analogue-to-digital convertor; electrical models; C-RAN context; hard-decision algorithm Gradient descent bit flipping; BWGDBF algorithm

Subjects: Codes; Interpolation and function approximation (numerical analysis); Optimisation techniques; Radio access systems; Other topics in statistics

References

    1. 1)
      • 23. Wadayama, T., Nakamura, K., Yagita, M., et al: ‘Gradient descent bit flipping algorithms for decoding LDPC codes’. Int. Symp. on Information Theory and Its Applications, ISITA, Auckland, New Zealand, 2008, pp. 16.
    2. 2)
      • 3. Simon, G., Saliou, F., Chanclou, P., et al: ‘Infrastructure impact on transmission performances of self-seeded DWDM colorless sources at 2.5 Gbps’. (ECOC) IEEE European Conf. Optical Communication, Cannes, France, 2014, pp. 13.
    3. 3)
      • 26. Phromsa-Ard, T., Arpornsiripat, J., Wetcharungsri, J., et al: ‘Improved gradient descent bit flipping algorithms for LDPC decoding’. Second Int. Conf. on Digital Information and Communication Technology and it's Applications (DICTAP), Bangkok, Thailand, 2012, pp. 324328.
    4. 4)
      • 16. Zhang, J., Fossorier, M.P.C.: ‘A modified weighted bit-flipping decoding of low-density parity-check codes’, IEEE Commun. Lett., 2004, 8, (3), pp. 165167.
    5. 5)
      • 25. Sundararajan, G., Winstead, C., Boutillon, E.: ‘Noisy gradient descent bit-flip decoding for LDPC codes’, IEEE Trans. Commun., 2014, 62, (10), pp. 33853400.
    6. 6)
      • 22. Li, G., Li, D., Wang, Y., et al: ‘Improved parallel weighted bit flipping decoding of finite geometry LDPC codes’. Fourth Int. Conf. Communications and Networking in China, Maoming, China, 2009, pp. 15.
    7. 7)
      • 12. Miladinovic, N., Fossorier, M.P.C.: ‘Improved bit-flipping decoding of low-density parity-check codes’, IEEE Trans. Inf. Theory, 2005, 51, (4), pp. 15941606.
    8. 8)
      • 5. Kou, Y., Lin, S., Fossorier, M.P.C.: ‘Low-density parity-check codes based on finite geometries: a rediscovery and new results’, IEEE Trans. Inf. Theory, 2001, 47, (7), pp. 27112736.
    9. 9)
      • 20. Chen, T.-C.: ‘Adaptive-weighted multibit-flipping decoding of low density parity-check codes based on ordered statistics’, IET Commun., 2013, 7, (14), pp. 15171521.
    10. 10)
      • 4. Mackay, D.J.C., Neal, R.M.: ‘Near Shannon limit performance of low density parity check codes’, Electron. Lett., 1996, 32, (18), p. 1645.
    11. 11)
      • 27. Haga, R., Usami, S.: ‘Multi-bit flip type gradient descent bit flipping decoding using no thresholds’. Int. Symp. Information Theory and its Applications (ISITA), Honolulu, Hawaii, USA, 2012, pp. 610.
    12. 12)
      • 2. Won, E., Lee, K.L., Anderson, T.B.: ‘Directly modulated self-seeding reflective semiconductor optical amplifiers as colorless transmitters in wavelength division multiplexed passive optical networks’, J. Lightwave Technol., 2007, 25, (1), pp. 6774.
    13. 13)
      • 30. Li, A., Meghdadi, V., Cances, J.-P., et al: ‘High throughput LDPC decoder for C-RAN optical fronthaul based on improved bit-flipping algorithm’. Tenth Int. Symp. Communication Systems, Networks and Digital Signal Processing (CSNDSP), Prague, Czech Republic, 2016, pp. 15.
    14. 14)
      • 28. Tithi, T., Winstead, C., Sundararajan, G.: ‘Decoding LDPC codes via noisy gradient descent bit-flipping with re-decoding’, arXiv preprint arXiv:1503.08913, 2015.
    15. 15)
      • 14. Nguyen, D.V., Vasic, B.: ‘Two-bit bit flipping algorithms for LDPC codes and collective error correction’, IEEE Trans. Commun., 2014, 62, (4), pp. 11531163.
    16. 16)
      • 1. Chanclou, P., Pizzinat, A., Le Clech, F., et al: ‘Optical fiber solution for mobile fronthaul to achieve cloud radio access network’. Future Network and Mobile Summit (Future Network Summit), Lisboa, Portugal, 3–5 July 2013, pp. 111.
    17. 17)
      • 29. Li, A., Meghdadi, V., Cances, J.-P., et al: ‘High rate LDPC based decoder architectures with high speed ADC for C-RAN optical fronthaul’. Int. Conf. Computer and Communication Engineering (ICCCE), Kuala Lumpur, Malaysia, 2016, pp. 386391.
    18. 18)
      • 31. Fossorier, M.P.C.: ‘Quasi-cyclic low-density parity-check codes from circulant permutation matrices’, IEEE Trans. Inf. Theory, 2004, 50, (8), pp. 17881793.
    19. 19)
      • 11. Balatsoukas-Stimming, A., Dollas, A.: ‘FPGA-based design and implementation of a multi-GBPS LDPC decoder’. 22nd Int. Conf. Field Programmable Logic and Applications (FPL), Oslo, Norway, 2012, pp. 262269.
    20. 20)
      • 36. Khan, Z., Arslan, T., Macdougall, S.: ‘A real time programmable encoder for low density parity check code as specified in the IEEE P802’. IEEE Int. Conf. SoC 16E/D7 Standard and its Efficient Implementation on a DSP Processor, Taipei, Taiwan, 2006, pp. 1720.
    21. 21)
      • 17. Jiang, M., Zhao, C., Shi, Z., et al: ‘An improvement on the modified weighted bit flipping decoding algorithm for LDPC codes’, IEEE Commun. Lett., 2005, 9, (9), pp. 814816.
    22. 22)
      • 9. Xu, M., Wu, J., Zhang, M.: ‘A modified offset min-sum decoding algorithm for LDPC codes’. Third IEEE Int. Conf. Computer Science and Information Technology (ICCSIT), Chengdu, China, 2010, pp. 1922.
    23. 23)
      • 6. Yazdani, M.R., Hemati, S., Banihashemi, A.H.: ‘Improving belief propagation on graphs with cycles’, IEEE Commun. Lett., 2004, 8, (1), pp. 5759.
    24. 24)
      • 24. Boyd, S., Vandenberghe, L.: ‘Convex optimization’ (Cambridge university press, New York, NY, USA, 2004), ISBN:0521833787.
    25. 25)
      • 35. Wang, Z., Cui, Z.: ‘Low-complexity high-speed decoder design for quasi-cyclic LDPC codes’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2007, 15, (1), pp. 104114.
    26. 26)
      • 8. Jiang, M., Zhao, C., Zhang, L., et al: ‘Adaptive offset min-sum algorithm for low-density parity check codes’, IEEE Commun. Lett., 2006, 10, (6), pp. 483485.
    27. 27)
      • 21. Zhang, L., Ye, Z., Feng, Q.: ‘An improved multi-bit threshold flipping LDPC decoding algorithm’, Int. J. Comput. Theory Eng., 2014, 6, (6), p. 510.
    28. 28)
      • 7. Chen, J., Fossorier, M.P.C.: ‘Density evolution for two improved BP-based decoding algorithms of LDPC codes’, IEEE Commun. Lett., 2002, 6, (5), pp. 208210.
    29. 29)
      • 10. Savin, V.: ‘Self-corrected min-sum decoding of LDPC codes’. IEEE Int. Symp. Information Theory, Toronto, Canada, 2008, pp. 146150.
    30. 30)
      • 13. Chang, T.C.-Y., Su, Y.T.: ‘Dynamic weighted bit-flipping decoding algorithms for LDPC codes’, IEEE Trans. Commun., 2015, 63, (11), pp. 39503963.
    31. 31)
      • 19. Wu, X., Zhao, C., You, X.: ‘Parallel weighted bit-flipping decoding’, IEEE Commun. Lett., 2007, 11, (8), pp. 671673.
    32. 32)
      • 18. Guo, F., Hanzo, L.: ‘Reliability ratio based weighted bit-flipping decoding for low-density parity-check codes’, Electron. Lett., 2004, 40, (21), pp. 13561358.
    33. 33)
      • 15. Cho, J., Sung, W.: ‘Adaptive threshold technique for bit-flipping decoding of low-density parity-check codes’, IEEE Commun. Lett., 2010, 14, (9), pp. 857859.
    34. 34)
      • 33. Al Hariri, A.A., Monteiro, F., Siéler, L., et al: ‘A high throughput configurable partially-parallel decoder architecture for quasi-cyclic low-density parity-check codes’. 2014 IEEE Conf. Design of Circuits and Integrated Circuits (DCIS), Madrid, Spain, 2014, pp. 16.
    35. 35)
      • 32. Zhang, W., Chen, S., Bai, X., et al: ‘A full layer parallel QC-LDPC decoder for WiMAX and Wi-Fi’. IEEE 11th Int. Conf. ASIC (ASICON), Chengdu, China, 2015, pp. 14.
    36. 36)
      • 34. Dai, Y., Chen, N., Yan, Z.: ‘Memory efficient decoder architectures for quasi-cyclic LDPC codes’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2008, 55, (9), pp. 28982911.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5102
Loading

Related content

content/journals/10.1049/iet-cds.2018.5102
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading