Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

Supercapacitor charging from piezoelectric energy harvesters using multi-input buck–boost converter

Supercapacitor charging from piezoelectric energy harvesters using multi-input buck–boost converter

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Design of DC–DC converter for harvesting maximum power from the multiple piezoelectric energy harvesters is a challenging task. In this work, a method to obtain maximum power from the multiple piezoelectric energy harvesters for supercapacitor charging is proposed. The method involves acquiring energy from each harvester by time-multiplexed operation of the multi-input buck–boost converter. The maximum power from each harvester is extracted by operating the converter to match the impedance of each harvester to the load impedance. The impedance matching is done by operating the converter with optimal duty cycle. The proposed method is experimentally evaluated, and the charging rate of supercapacitor is found to be higher while charging by the proposed method as compared to charging directly through the rectifier. The proposed method involves a single converter circuit for extracting energy from multiple piezoelectric energy harvesters, so that the component utilisation and its associated losses are very much reduced.

References

    1. 1)
      • 25. Jeong, S.Y., Jung, H.J., Jabbar, H., et al: ‘Design of a multi-array piezoelectric energy harvester for a wireless switch’, Int. J. Hydrogen Energy, 2016, 41, (29), pp. 1269612703.
    2. 2)
      • 19. Vasic, D., Yao, Y.: ‘Piezoelectric energy harvester with PWM electric interface’. 2013 15th Eur. Conf. Power Electron. Appl. EPE 2013, Lille, France, 2013.
    3. 3)
      • 31. Colalongo, L., Dotti, D., Richelli, A., et al: ‘Non-isolated multiple-input boost converter for energy harvesting’, Electron. Lett., 2017, 53, (16), pp. 34.
    4. 4)
      • 27. Xiao, Z., Yang, T.Q., Dong, Y., et al: ‘Energy harvester array using piezoelectric circular diaphragm for broadband vibration’, Appl. Phys. Lett., 2014, 104, (22), pp. 15.
    5. 5)
      • 2. Beeby, S.P., Tudor, M.J., White, N.M.: ‘Energy harvesting vibration sources for microsystems applications’, Meas. Sci. Technol., 2006, 17, (12), pp. R175R195.
    6. 6)
      • 32. Shu, Y.C., Lien, I.C.: ‘Analysis of power output for piezoelectric energy harvesting systems’, Smart Mater. Struct., 2006, 15, (6), pp. 14991512.
    7. 7)
      • 23. Lefeuvre, E., Audigier, D., Richard, C., et al: ‘Buck-boost converter for sensorless power optimization of piezoelectric energy harvester’, IEEE Trans. Power Electron., 2007, 22, (5), pp. 20182025.
    8. 8)
      • 7. Shahruz, S.M.: ‘Design of mechanical band-pass filters for energy scavenging: multi-degree-of-freedom models’, JVC/J. Vib. Control, 2008, 14, (5), pp. 753768.
    9. 9)
      • 10. Dagdeviren, C., Yang, B.D., Su, Y., et al: ‘Conformal piezoelectric energy harvesting and storage from motions of the heart, lung, and diaphragm’, Proc. Natl. Acad. Sci., 2014, 111, (5), pp. 19271932.
    10. 10)
      • 12. Yu, H., Zhou, J., Deng, L., et al: ‘A vibration-based MEMS piezoelectric energy harvester and power conditioning circuit’, Sensors (Switzerland), 2014, 14, (2), pp. 33233341.
    11. 11)
      • 20. Zhao, Z., Wang, S., You, C.: ‘Piezoelectric micro-power generation to charge supercapacitor with optimized duty cycle’, J. Intell. Mater. Syst. Struct., 2010, 21, (11), pp. 11311140.
    12. 12)
      • 8. Tuna, G., Gungor, V.C.: ‘Energy harvesting and battery technologies for powering wireless sensor network’, in Budampati, R., Kolavennu, S., (Eds.): ‘Industrial wireless sensor networks monitoring, control and automation’ (Wood head Publishing Series in Electronic and Optical Materials, Cambridge, UK, 1st edn.2016), pp. 2538.
    13. 13)
      • 16. Du, S., Seshia, A.A.: ‘An inductorless bias-flip rectifier for piezoelectric energy harvesting’, IEEE J. Solid-State Circuits, 2017, 52, (10), pp. 27462757.
    14. 14)
      • 34. https://www.sparklerceramics.com/.
    15. 15)
      • 6. Ramalingam, U., Gandhi, U., Mangalanathan, U., et al: ‘A new piezoelectric energy harvester using two beams with tapered cavity for high power and wide broadband’, Int. J. Mech. Sci., 2018, 142–143, pp. 224234.
    16. 16)
      • 26. Shu, C., Lien, I.C., Shu, Y.C.: ‘Array of piezoelectric energy harvesting by the equivalent impedance approach’, Smart Mater. Struct., 2012, 21, (8), pp. 082001-1082001-8.
    17. 17)
      • 3. Srinivasulu Raju, S., Umapathy, M., Uma, G.: ‘Cantilever piezoelectric energy harvester with multiple cavities’, Smart Mater. Struct., 2015, 24, (11), pp. 115023-1115023-11.
    18. 18)
      • 13. Wang, H., Meng, Q.: ‘Analytical modeling and experimental verification of vibration-based piezoelectric bimorph beam with a tip-mass for power harvesting’, Mech. Syst. Signal Process., 2013, 36, (1), pp. 193209.
    19. 19)
      • 29. Dobbs, B.G., Chapman, P.L.: ‘A multiple-input DC–DC converter topology’, IEEE Power Electron. Lett., 2003, 1, (1), pp. 69.
    20. 20)
      • 28. Baek, K.H., Hong, S.K., Kim, S. B., et al: ‘Study of charging efficiency of a piezoelectric energy harvesting system using rectifier and array configuration’, Ferroelectrics, 2013, 449, (1), pp. 4251.
    21. 21)
      • 15. Guyomar, D., Badel, A., Lefeuvre, E., et al: ‘Toward energy harvesting using active materials and conversion improvement by nonlinear processing’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2005, 52, (4), pp. 584594.
    22. 22)
      • 14. Kim, H.W., Priya, S., Stephanou, H., et al: ‘Consideration of impedance matching techniques for efficient piezoelectric energy harvesting’, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 2007, 54, (9), pp. 18511859.
    23. 23)
      • 1. Anton, S.R., Sodano, H.A.: ‘A review of power harvesting using piezoelectric materials (2003–2006)’, Smart Mater. Struct., 2007, 16, (3), pp. R1R21.
    24. 24)
      • 30. Shi, C., Miller, B., Mayaram, K., et al: ‘A multiple-input boost converter for low-power energy harvesting’, IEEE Trans. Circuits Syst. II Express Briefs, 2011, 58, (12), pp. 827831.
    25. 25)
      • 18. Xia, H., Xia, Y., Ye, Y., et al: ‘Analysis and simulation of synchronous electric charge partial extraction technique for efficient piezoelectric energy harvesting’, IEEE Sens. J., 2018, 8, (15), pp. 62356244.
    26. 26)
      • 33. Liao, Y., Sodano, H.A.: ‘Optimal placement of piezoelectric material on a cantilever beam for maximum piezoelectric damping and power harvesting efficiency’, Smart Mater. Struct., 2012, 21, (10), pp. 105014-1105014-10.
    27. 27)
      • 21. Ottman, G.K., Hoffman, H.F., Lesieutre, G.A.: ‘Optimized piezoelectric energy harvesting circuit using step-down converter in discontinous conduction mode’, IEEE Trans. Power Electron., 2002, 17, (5), pp. 696703.
    28. 28)
      • 17. Chen, Z., Law, M.K., Mak, P.I., et al: ‘Fully integrated inductor-less flipping-capacitor rectifier for piezoelectric energy harvesting’, IEEE J. Solid-State Circuits, 2017, 52, (12), pp. 31683180.
    29. 29)
      • 9. Lu, B., Chen, Y., Ou, D., et al: ‘Ultra-flexible piezoelectric devices integrated with heart to harvest the biomechanical energy’, Sci. Rep., 2015, 5, pp. 19.
    30. 30)
      • 24. Jia, C., Chen, H., Liu, M., et al: ‘Integrated power management circuit for piezoelectronic generator in wireless monitoring system of orthopaedic implants’, IET Circuits Devices Syst., 2008, 2, (6), pp. 485494.
    31. 31)
      • 5. Usharani, R., Uma, G., Umapathy, M., et al: ‘Design of high output broadband piezoelectric energy harvester’, J. Mech. Sci. Technol., 2017, 31, (7), pp. 31313142.
    32. 32)
      • 11. Yang, Y., Shi, X., Lan, H., et al: ‘Investigation on behavior of the vibration-based piezoelectric energy harvester array in ultracapacitor charging’, Appl. Phys. Lett., 2015, 106, (17), pp. 16.
    33. 33)
      • 22. Kasyap, A., Lim, J., Johnson, D., et al: ‘Energy reclamation from a vibrating piezoceramic composite beam’. Proc. 9th Int. Congr. Sound Vib., Orlando, USA, 2002, 9, (271), pp. 3643.
    34. 34)
      • 4. Roundy, S., Wright, P.K., Rabaey, J.: ‘A study of low level vibrations as a power source for wireless sensor nodes’, Comput. Commun., 2003, 26, (11), pp. 11311144.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5069
Loading

Related content

content/journals/10.1049/iet-cds.2018.5069
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address