© The Institution of Engineering and Technology
In this study, parasitic elements (nonidealities) effect on a lowpower DC–DC buck–boost converter design is analysed and investigation is carried out by both large (i.e. steadystate) and small signal analysis. The large signal analysis of nonideal buck–boost converter explored the significant information such as nearly accurate duty cycle, maximum allowable duty cycle and maximum possible output voltage. Further, accurate mathematical design formulae are derived of inductor and capacitor for specified inductor current ripple and output voltage ripple (OVR), respectively. Moreover, consequences of different equivalent series resistance of capacitor on OVR is examined. Subsequently, the exact model of buck–boost converter is procured from the small signal analysis, which is almost analogous to practical system. In order to show the impact of nonidealities on controller design, an internal model control PID controller is designed for ideal, seminonideal and complete nonideal systems based on their respective models, which shows the controller based on nonideal model provides very close results to practical system. Conclusively, the complete theoretical explorations are justified by simulations and substantiated by experimental results.
References


1)

1. Singh, A.K., Pathak, M.K.: ‘Singlestage ZETASEPICbased multifunctional integrated converter for plugin electric vehicles’, IET Electr. Syst. Transp., 2017, 8, (2), pp. 101–111.

2)

2. Li, W., Xiangning, H.: ‘Review of nonisolated highstepup DC/DC converters in photovoltaic gridconnected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 1239–1250.

3)

3. Bussa, V.K., Ahmad, A., Singh, R., et al: ‘Interleaved hybrid converter with simultaneous DC and AC outputs for DC microgrid applications’, IEEE Trans. Ind. Appl., 2017, 54, (3), pp. 2763–2772.

4)

4. Siddhartha, V., Hote, Y.V.: ‘Noninverting buckboost derived hybrid converter’. Proc. IEEE Int. Conf. Emerging Trends in Electrical Electronics & Sustainable Energy Systems, KNIT Sultanpur, India, 2016.

5)

5. Ahmad, A., Bussa, V.K., Singh, R.K., et al: ‘Quadratic boost derived hybrid multioutput converter’, IET Power Electron., 2017, 10, (15), pp. 2042–2054.

6)

6. Kumar, B.V., Singh, R.K., Mahanty, R.: ‘A modified nonisolated bidirectional DC–DC converter for EV/HEV's traction drive systems’. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, Trivandrum, India, 2016 Dec 14, pp. 1–6.

7)

7. Cavallo, A., Giacomo, C., Beniamino, G.: ‘Supervised control of buckboost converters for aeronautical applications’, Automatica, 2017, 83, pp. 73–80.

8)

8. Shtessel, Y.B., Alan, S.Z., Ilia, A.S.: ‘Boost and buckboost power converters control via sliding modes using dynamic sliding manifold’. Proc. of the 41st IEEE Conf. on Decision and Control, Vegas, NV, USA, 2002.

9)

9. Chen, Z.: ‘Double loop control of buckboost converters for wide range of load resistance and reference voltage’, IET Control Theory Applic., 2012, 6, (7), pp. 900–910.

10)

10. Buso, S.: ‘Design of a robust voltage controller for a buckboost converter using µsynthesis’, IEEE Trans. Control Syst. Technol., 1999, 7, (2), pp. 222–229.

11)

11. Salimi, M., Soltani, J., Zakipour, A.: ‘Adaptive nonlinear control of DC–DC buck/boost converters with parasitic elements consideration’. Proc. of IEEE 2nd Int. Conf. on Control, Instrumentation and Automation, Shiraz, Iran, 2011, pp. 304–309.

12)

12. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer Academic Publications, Norwell, MA, USA, 2001).

13)

13. Rashid, M.H.: ‘Power electronics handbook: devices, circuits and applications’ (Academic press, Burlington, MA, USA, 2010).

14)

14. Kazimierczuk, M.K.: ‘Pulsewidth modulated DC–DC power converters’ (John Wiley & Sons, West Sussex, UK, 2015).

15)

15. Czarkowski, D., Kazimierczuk, M.K.: ‘Circuit models of PWM DC–DC converters’. Proc. of IEEE NAECON, Dayton, OH, USA, 1992, pp. 407–413.

16)

16. Garg, M.M., Pathak, M.K., Hote, Y.V.: ‘Effect of nonidealities on the design and performance of a DC–DC buck converter’, J. Power Electron., 2016, 16, (3), pp. 832–839.

17)

17. Garg, M.M.: ‘Modeling and control of DC–DC converters’. , Indian Institute of Technology, Roorkee, 2016.

18)

18. Siddhartha, V., Hote, Y.V.: ‘Systematic circuit design and analysis of a nonideal DC–DC pulse width modulation boost converter’, IET Circuits Devices Syst., 2018, 12, (2), pp. 144–156.

19)

19. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Operational modes and outputvoltageripple analysis and design considerations of buckboost DC–DC converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 381–391.

20)

20. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Calculation of output voltage ripple and design considerations of SEPIC converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 1213–1222.

21)

21. Umanand, L.: ‘Lecture notes on design of photovoltaic systems’, 2017.

22)

22. Almasi, O., Fereshtehpoor, V., Khooban, M.H., et al: ‘Analysis, control and design of a noninverting buckboost converter: a bumpless twolevel TS fuzzy PI control’, ISA Trans., 2017, 67, pp. 515–527.

23)

23. Chen, J., Maksimovic, D., Erickson, R.W.: ‘Analysis and design of a lowstress buckboost converter in universalinput PFC applications’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 320–329.

24)

24. Mihajlovic, Z., Lehman, B., Sun, C.: ‘Output ripple analysis of switching DC–DC converters’, IEEE Trans. Circ. Syst. I, 2004, 51, (8), pp. 1596–1611.

25)

25. Dahono, P.A., Riyadi, S., Mudawari, A., et al: ‘Output ripple analysis of multiphase DC–DC converters’. Proc. of IEEE Int. Conf. on Power Electronics and Drive Systems, Hong Kong, Hong Kong, 1999.

26)

26. Saxena, S., Hote, Y.V.: ‘Advances in internal model control technique: a review and future prospects’, IETE Tech. Rev., 2012, 29, (6), pp. 461–472.
http://iet.metastore.ingenta.com/content/journals/10.1049/ietcds.2018.5053
Related content
content/journals/10.1049/ietcds.2018.5053
pub_keyword,iet_inspecKeyword,pub_concept
6
6