Your browser does not support JavaScript!

Low-power non-ideal pulse-width modulated DC–DC buck–boost converter: design, analysis and experimentation

Low-power non-ideal pulse-width modulated DC–DC buck–boost converter: design, analysis and experimentation

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

In this study, parasitic elements (non-idealities) effect on a low-power DC–DC buck–boost converter design is analysed and investigation is carried out by both large (i.e. steady-state) and small signal analysis. The large signal analysis of non-ideal buck–boost converter explored the significant information such as nearly accurate duty cycle, maximum allowable duty cycle and maximum possible output voltage. Further, accurate mathematical design formulae are derived of inductor and capacitor for specified inductor current ripple and output voltage ripple (OVR), respectively. Moreover, consequences of different equivalent series resistance of capacitor on OVR is examined. Subsequently, the exact model of buck–boost converter is procured from the small signal analysis, which is almost analogous to practical system. In order to show the impact of non-idealities on controller design, an internal model control PID controller is designed for ideal, semi-non-ideal and complete non-ideal systems based on their respective models, which shows the controller based on non-ideal model provides very close results to practical system. Conclusively, the complete theoretical explorations are justified by simulations and substantiated by experimental results.


    1. 1)
      • 18. Siddhartha, V., Hote, Y.V.: ‘Systematic circuit design and analysis of a non-ideal DC–DC pulse width modulation boost converter’, IET Circuits Devices Syst., 2018, 12, (2), pp. 144156.
    2. 2)
      • 4. Siddhartha, V., Hote, Y.V.: ‘Non-inverting buck-boost derived hybrid converter’. Proc. IEEE Int. Conf. Emerging Trends in Electrical Electronics & Sustainable Energy Systems, KNIT Sultanpur, India, 2016.
    3. 3)
      • 20. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Calculation of output voltage ripple and design considerations of SEPIC converter’, IEEE Trans. Ind. Electron., 2014, 61, (3), pp. 12131222.
    4. 4)
      • 15. Czarkowski, D., Kazimierczuk, M.K.: ‘Circuit models of PWM DC–DC converters’. Proc. of IEEE NAECON, Dayton, OH, USA, 1992, pp. 407413.
    5. 5)
      • 16. Garg, M.M., Pathak, M.K., Hote, Y.V.: ‘Effect of non-idealities on the design and performance of a DC–DC buck converter’, J. Power Electron., 2016, 16, (3), pp. 832839.
    6. 6)
      • 3. Bussa, V.K., Ahmad, A., Singh, R., et al: ‘Interleaved hybrid converter with simultaneous DC and AC outputs for DC microgrid applications’, IEEE Trans. Ind. Appl., 2017, 54, (3), pp. 27632772.
    7. 7)
      • 11. Salimi, M., Soltani, J., Zakipour, A.: ‘Adaptive nonlinear control of DC–DC buck/boost converters with parasitic elements consideration’. Proc. of IEEE 2nd Int. Conf. on Control, Instrumentation and Automation, Shiraz, Iran, 2011, pp. 304309.
    8. 8)
      • 2. Li, W., Xiangning, H.: ‘Review of nonisolated high-step-up DC/DC converters in photovoltaic grid-connected applications’, IEEE Trans. Ind. Electron., 2011, 58, (4), pp. 12391250.
    9. 9)
      • 5. Ahmad, A., Bussa, V.K., Singh, R.K., et al: ‘Quadratic boost derived hybrid multi-output converter’, IET Power Electron., 2017, 10, (15), pp. 20422054.
    10. 10)
      • 17. Garg, M.M.: ‘Modeling and control of DC–DC converters’. PhD thesis, Indian Institute of Technology, Roorkee, 2016.
    11. 11)
      • 13. Rashid, M.H.: ‘Power electronics handbook: devices, circuits and applications’ (Academic press, Burlington, MA, USA, 2010).
    12. 12)
      • 19. Babaei, E., Mahmoodieh, M.E.S., Mahery, H.M.: ‘Operational modes and output-voltage-ripple analysis and design considerations of buck-boost DC–DC converters’, IEEE Trans. Ind. Electron., 2012, 59, (1), pp. 381391.
    13. 13)
      • 12. Erickson, R.W., Maksimovic, D.: ‘Fundamentals of power electronics’ (Kluwer Academic Publications, Norwell, MA, USA, 2001).
    14. 14)
      • 1. Singh, A.K., Pathak, M.K.: ‘Single-stage ZETA-SEPIC-based multifunctional integrated converter for plug-in electric vehicles’, IET Electr. Syst. Transp., 2017, 8, (2), pp. 101111.
    15. 15)
      • 24. Mihajlovic, Z., Lehman, B., Sun, C.: ‘Output ripple analysis of switching DC–DC converters’, IEEE Trans. Circ. Syst. I, 2004, 51, (8), pp. 15961611.
    16. 16)
      • 23. Chen, J., Maksimovic, D., Erickson, R.W.: ‘Analysis and design of a low-stress buck-boost converter in universal-input PFC applications’, IEEE Trans. Power Electron., 2006, 21, (2), pp. 320329.
    17. 17)
      • 10. Buso, S.: ‘Design of a robust voltage controller for a buck-boost converter using µ-synthesis’, IEEE Trans. Control Syst. Technol., 1999, 7, (2), pp. 222229.
    18. 18)
      • 25. Dahono, P.A., Riyadi, S., Mudawari, A., et al: ‘Output ripple analysis of multiphase DC–DC converters’. Proc. of IEEE Int. Conf. on Power Electronics and Drive Systems, Hong Kong, Hong Kong, 1999.
    19. 19)
      • 22. Almasi, O., Fereshtehpoor, V., Khooban, M.H., et al: ‘Analysis, control and design of a non-inverting buck-boost converter: a bump-less two-level T-S fuzzy PI control’, ISA Trans., 2017, 67, pp. 515527.
    20. 20)
      • 21. Umanand, L.: ‘Lecture notes on design of photovoltaic systems(module 06, lecture 58, available on’, 2017.
    21. 21)
      • 6. Kumar, B.V., Singh, R.K., Mahanty, R.: ‘A modified non-isolated bidirectional DC–DC converter for EV/HEV's traction drive systems’. IEEE Int. Conf. on Power Electronics, Drives and Energy Systems, Trivandrum, India, 2016 Dec 14, pp. 16.
    22. 22)
      • 9. Chen, Z.: ‘Double loop control of buck-boost converters for wide range of load resistance and reference voltage’, IET Control Theory Applic., 2012, 6, (7), pp. 900910.
    23. 23)
      • 14. Kazimierczuk, M.K.: ‘Pulse-width modulated DC–DC power converters’ (John Wiley & Sons, West Sussex, UK, 2015).
    24. 24)
      • 7. Cavallo, A., Giacomo, C., Beniamino, G.: ‘Supervised control of buck-boost converters for aeronautical applications’, Automatica, 2017, 83, pp. 7380.
    25. 25)
      • 26. Saxena, S., Hote, Y.V.: ‘Advances in internal model control technique: a review and future prospects’, IETE Tech. Rev., 2012, 29, (6), pp. 461472.
    26. 26)
      • 8. Shtessel, Y.B., Alan, S.Z., Ilia, A.S.: ‘Boost and buck-boost power converters control via sliding modes using dynamic sliding manifold’. Proc. of the 41st IEEE Conf. on Decision and Control, Vegas, NV, USA, 2002.

Related content

This is a required field
Please enter a valid email address