http://iet.metastore.ingenta.com
1887

0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh–Rose neuron model using companding technique

0.65 V integrable electronic realisation of integer- and fractional-order Hindmarsh–Rose neuron model using companding technique

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Some neurons like neocortical pyramidal neurons adapt with multiple time-scales, which is consistent with fractional-order differentiation. The fractional-order neuron models are therefore believed to portray the firing rate of neurons more accurately than their integer-order models. It has been studied that as the fractional order of differentiator and integrator involved in the neuron model decreases, bursting frequency of the neurons increases. The opposite effect has been observed on increasing the external excitation. In this study, integer- and fractional-order Hindmarsh–Rose (HR) neuron models have been implemented using sinh companding technique. Besides, the application of the HR neuron model in a simple network of two neurons has also been considered. The designs offer a low-voltage and low-power implementation along with the electronic tunability of the performance characteristics. Due to the use of only metal-oxide semiconductor (MOS) transistors and grounded capacitors, the proposed implementation can be integrated in chip form. On comparing with existing implementations, the implemented fractional-order and integer-order models show a better performance in terms of power consumption, supply voltage, order and flexibility. The performance of the circuits has been verified using 130 nm complementary MOS (CMOS) technology process provided by Austrian Micro Systems using HSPICE simulation software.

References

    1. 1)
      • 1. Sabatier, J., Agrawal, O.P., Machado, J.A.T.: ‘Advances in fractional calculus: theoretical developments and applications in physics and engineering’ (Springer Publishing Company, Netherland, 2007), ISBN: 1402060416 9781402060410.
    2. 2)
      • 2. Ortigueira, M.: ‘An Introduction to the fractional continuous- time linear systems: the 21st century systems’, IEEE Circuits Syst. Mag., 2008, 8, (3), pp. 1926.
    3. 3)
      • 3. Lundstrom, B.N., Higgs, M.H., Spain, W.J., et al: ‘Fractional differentiation by neocortical pyramidal neurons’, Nat. Neurosci., 2008, 11, (11), pp. 13351342.
    4. 4)
      • 4. Jun, D., Jun, Z.G., Yong, X., et al: ‘Dynamic behaviour analysis of fractional-order Hindmarsh–Rose neuronal model’, Cogn. Neurodynamics, 2014, 8, (2), pp. 167175.
    5. 5)
      • 5. Anastasio, T.J.: ‘The fractional-order dynamics of brainstem vestibulo-oculomotor neurons’, Biol. Cybern., 1994, 72, (1), pp. 6979.
    6. 6)
      • 6. Magin, R.L.: ‘Fractional calculus models of complex dynamics in biological tissues’, Comput. Math. Appl., 2010, 59, pp. 15861593.
    7. 7)
      • 7. Yong, L., Yong, X.: ‘Dynamical characteristics of the fractional order Fitz-Hugh-Nagumo model neuron and its synchronization’, Acta Phys. Sin., 2010, 59, (3), pp. 24172455.
    8. 8)
      • 8. Yong, X., Mei, K.Y., Yong, L., et al: ‘Firing properties and synchronization rate in fractional-order Hindmarsh-Rose model neuron’, Sci. China Technol. Sci., 2014, 57, (5), pp. 914922.
    9. 9)
      • 9. Velmurugan, G., Rakkiyappan, R.: ‘Stability analysis of fractional-order Hindmarsh-Rose neuron model with time-delays’, J. Int. Acad. Phys. Sci., 2015, 19, (3), pp. 233243.
    10. 10)
      • 10. Nagy, A.M., Sweilam, N.H.: ‘An efficient method for solving fractional Hodgkin–Huxley model’, Phys. Lett. A, 2014, 378, pp. 19801984.
    11. 11)
      • 11. Kaslik, E., Sivasundaram, S.: ‘Nonlinear dynamics and chaos in fractional-order neural networks’, Neural Netw., 2012, 32, pp. 245256.
    12. 12)
      • 12. Elwakil, A.: ‘Fractional-order circuits and systems: an emerging interdisciplinary research area’, IEEE Circuits Syst. Mag., 2010, 10, (4), pp. 4050.
    13. 13)
      • 13. Freeborn, T.J.: ‘A survey of fractional-order circuit models for biology and biomedicine’, IEEE J. Emerg. Sel. Top. Circuits Syst., 2013, 3, (3), pp. 416424.
    14. 14)
      • 14. Ahmadi, P., Maundy, B., Elwakil, A.S., et al: ‘High-quality factor asymmetric-slope band-pass filters: a fractional-order capacitor approach’, IET Circuits Devices Syst., 2012, 6, (3), pp. 187197.
    15. 15)
      • 15. Mondal, D., Biswas, K.: ‘Performance study of fractional order integrator using single-component fractional order element’, IET Circuits Devices Syst., 2011, 5, (4), pp. 334342.
    16. 16)
      • 16. Hu, X., Liu, C., Liu, L., et al: ‘An electronic implementation for Morris–Lecar neuron model’, Nonlinear Dyn., 2016, 84, (4), pp. 23172332.
    17. 17)
      • 17. Demirkol, A.S., Ozoguz, S.: ‘A low power VLSI implementation of the izhikevich neuron model’. IEEE 9th Int. New Circuits and Systems Conf., Bordeaux, France, 2011, pp. 169172.
    18. 18)
      • 18. Diamantopoulos, C., Psychalinos, C.: ‘Mihalas–Niebuhr model implementation using Sinh-Domain integrators’, Analog Integr. Circuits Signal Process., 2016, 88, (1), pp. 161171.
    19. 19)
      • 19. Kant, N.A., Dar, M.R., Khanday, F.A.: ‘An ultra-low-voltage electronic implementation of inertial neuron model with non-monotonous Liao's activation function’, Netw., Comput. Neural Syst., 2015, 26, (3–4), pp. 116135.
    20. 20)
      • 20. Hayati, M., Nouri, M., Haghiri, S., et al: ‘Digital Multiplierless realization of two coupled biological Morris-Lecar neuron model’, IEEE Trans. Circuits Syst. I, 2015, 62, (7), pp. 18051814.
    21. 21)
      • 21. Nouri, M., Karimi, G.R., Ahmadi, A., et al: ‘Digital Multiplierless implementation of the biological FitzHugh-Nagumo model’, Neurocomputing, 2015, 165, pp. 468476.
    22. 22)
      • 22. Hayati, M., Nouri, M., Abbott, D., et al: ‘Digital multiplierless realization of two-coupled biological Hindmarsh–Rose neuron’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (5), pp. 463467.
    23. 23)
      • 23. Hayati, M., Nouri, M., Haghiri, S., et al: ‘A digital realization of astrocyte and neural glial interactions’, IEEE Trans. Biomed. Circuits Syst., 2016, 10, (1), pp. 518529.
    24. 24)
      • 24. Kazemi, A., Ahmadi, A., Gomar, S.: ‘A digital synthesis of Hindmarsh- Rose neuron: a thalamic neuron model of the brain’. Proc. of 22nd Iranian Conf. on Electrical Engineering (ICEE), Tehran, Iran, 2014, pp. 238241.
    25. 25)
      • 25. Dahasert, N., Öztürk, I., Kiliç, R.: ‘Experimental realizations of the HR neuron model with programmable hardware and synchronization applications’, Nonlinear Dyn., 2012, 70, (4), pp. 23432358.
    26. 26)
      • 26. Djeundam, S.D., Yamapi, R., Filatrella, G., et al: ‘Stability of the synchronized network of Hindmarsh–Rose neuronal models with nearest and global couplings’, Commun. Nonlinear Sci. Numer. Simul., 2015, 22, (1–3), pp. 545563.
    27. 27)
      • 27. Wang, H., Wang, Q., Qishao, L., et al: ‘Equilibrium analysis and phase synchronization of two coupled HR neurons with gap junction’, Cogn. Neurodynamics, 2013, 7, (2), pp. 121131.
    28. 28)
      • 28. Hong, J.Y., Hua, J.P.: ‘Chaotic control of the Hindmarsh–Rose model’, Acta Biophys. Sin., 2005, 21, (4), pp. 295300.
    29. 29)
      • 29. Yu, H., Peng, J.: ‘Chaotic synchronization and control in nonlinear coupled Hindmarsh–Rose neural systems’, Chaos Solitons Fractals, 2006, 29, (2), pp. 342348.
    30. 30)
      • 30. Wei, D.Q., Luo, X.S.: ‘Coherence resonance and noise-induced synchronization in Hindmarsh–Rose neural network with different topologies’, Commun. Theor. Phys., 2007, 48, (4), pp. 759762.
    31. 31)
      • 31. Rose, R.M., Hindmarsh, J.L.: ‘The assembly of ionic currents in a thalamic neuron. I. The three-dimensional’, Proc. R. Soc. Lond. B, Biol. Sci., 1988, 22:237, (1288), pp. 267288.
    32. 32)
      • 32. Erdener, Ö, Ozoguz, S.: ‘A new neuron and synapse model suitable for low power VLSI implementation’, Analog Integr. Circuits Signal Process., 2016, 89, (3), pp. 749770.
    33. 33)
      • 33. Dalibor, H.: ‘Synchronization of two Hindmarsh–Rose neurons with unidirectional coupling’, Neural Netw., 2013, 40, pp. 7379.
    34. 34)
      • 34. Matignon, D.: ‘Stability results for fractional differential equations with applications to control processing’, Proc. IEEE-SMC, 1996, 2, pp. 963968.
    35. 35)
      • 35. Deng, W., Li, C., Lu, J.: ‘Stability analysis of linear fractional differential system with multiple time delays’, Nonlinear Dyn., 2007, 48, (4), pp. 409416.
    36. 36)
      • 36. Lakshmanan, S., Lim, C.P., Nahavandi, S., et al: ‘Dynamical analysis of the Hindmarsh–Rose neuron with time delay’, IEEE Trans. Neural Netw. Learn. Syst., 2016, 28, (8), pp. 19531958.
    37. 37)
      • 37. Tsirimokou, G., Psychalinos, C.: ‘Ultra-low voltage fractional-order differentiator and integrator topologies: an application for handling noisy ECGs’, Analog Integr. Circuits Signal Process., 2014, 81, (2), pp. 393405.
    38. 38)
      • 38. Tsirimokou, G., Laoudias, C., Psychalinos, C.: ‘0.5-V fractional-order companding filters’, Int. J. Circuit Theory Appl., 2015, 43, (9), pp. 1051126.
    39. 39)
      • 39. Dar, M.R., Kant, N.A., Khanday, F.A.: ‘Realization of Integrable incommensurate-fractional-order-Rössler-system design using operational transconductance amplifiers (OTAs) and its experimental verification’, Int. J. Bifurcation Chaos, 2017, 27, (5), pp. 1750077-11750077-15.
    40. 40)
      • 40. Dar, M.R., Kant, N.A., Khanday, F.A.: ‘Electronic implementation of fractional order Newton-Leipnik chaotic system with application to communication’, J. Comput. Nonlinear Dyn., 2017, 12, (5), pp. 054502054506.
    41. 41)
      • 41. Dar, M.R., Kant, N.A., Khanday, F.A.: ‘Realization of fractional-order double-scroll chaotic system using operational transconductance amplifier (OTA)’, J. Circ. Syst. Comp., 2018, 27, (1), p. 1850006(15 pages). Available at https://doi.org/10.1142/S0218126618500068.
    42. 42)
      • 42. Kant, N.A., Dar, M.R., Khanday, F.A., et al: ‘Ultra-low-voltage integrable electronic realization of integer- and fractional-order Liao's chaotic delayed neuron model’, Circuits Syst. Signal Process., 2017, 36, (12), pp. 48444868.
    43. 43)
      • 43. Freeborn, T.J., Maundy, B., Elwakil, A.S.: ‘Field programmable analogue array implementation of fractional step filters’, IET Circuits Devices Syst., 2010, 4, (6), pp. 514524.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.5033
Loading

Related content

content/journals/10.1049/iet-cds.2018.5033
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address