Power-efficient aliasing-free PWM transmitter

Power-efficient aliasing-free PWM transmitter

For access to this article, please select a purchase option:

Buy eFirst article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Linearity and efficiency are important parameters in determining the performance of any wireless transmitter. Pulse-width modulation (PWM) based transmitters offer high efficiency but suffer from low linearity due to image and aliasing distortions. Although the problem of linearity can be addressed by using an aliasing-free PWM (AF-PWM), these transmitters have a lower efficiency as they can only use linear power amplifiers (PAs). Moreover, an all-digital implementation of such transmitters is not possible. The aliasing-compensated PWM transmitter (AC-PWMT) has a higher efficiency due to the use of switch-mode PAs (SMPAs) but uses outphasing to eliminate image and aliasing distortions and requires a larger silicon area. In this study, the authors propose a novel transmitter that eliminates both aliasing and image distortions while using a single SMPA. The transmitter can be implemented using all-digital techniques and achieves a higher efficiency as compared to both AF-PWM and AC-PWM based transmitters. Measurement results show an improvement of 11.3, 7.2, and 4.3 dBc in the ACLR as compared to the carrier-based PWM transmitter (C-PWMT), AF-PWMT, and AC-PWMT, respectively. The efficiency of the proposed transmitter is similar to that of C-PWMT, which is an improvement of 5% over AF-PWMT.


    1. 1)
      • 1. Chireix, H.: ‘High power outphasing modulation’, Proc IRE, 1935, 23, (11), pp. 13701392.
    2. 2)
      • 2. Fritzin, J., Svensson, C., Alvandpour, A.: ‘A + 32 dBm 1.85 GHz class-D outphasing RF PA in 130 nm CMOS for WCDMA/LTE’. Proc. European Solid-State Circuits Conf., Helsinki, Finland, 2011, pp. 127130.
    3. 3)
      • 3. Moloudi, S., Takinami, K., Youssef, M., et al: ‘An outphasing power amplifier for a software-defined radio transmitter’. Proc. IEEE Int. Solid-State Circuits Conf., San Francisco, CA, USA, 2008, pp. 568636.
    4. 4)
      • 4. Walling, J.S., Allstot, D.J.: ‘Pulse-width modulated CMOS power amplifiers’, IEEE Microw. Mag., 2011, 12, (1), pp. 5260.
    5. 5)
      • 5. Ozen, M., Jos, R., Andersson, C.M., et al: ‘High-efficiency RF pulsewidth modulation of class-E power amplifiers’, IEEE Trans. Microw. Theory Tech., 2011, 59, (11), pp. 29312942.
    6. 6)
      • 6. Shi, B., Chia, M.Y.W.: ‘On the performance of class-D power amplifiers with RF pulse-width modulation’. Proc. Asia-Pacific Microwave Conf., Melbourne, Australia, 2011, pp. 15501553.
    7. 7)
      • 7. Taromaru, M., Ando, N., Kodera, T., et al: ‘An EER transmitter architecture with burst-width envelope modulation based on triangle-wave comparison PWM’. Int. Symp. on Personal, Indoor and Mobile Radio Communications, Athens, Greece, 2007.
    8. 8)
      • 8. Haque, M.F.U., Johansson, T., Liu, D.: ‘Combined RF and multiphase PWM transmitter’, European Conf. on Circuit Theory and Design, Trondheim, Norway, 2015.
    9. 9)
      • 9. Haque, M.F.U., Johansson, T., Liu, D.: ‘Combined RF and multilevel PWM switch mode power amplifier’, NORCHIP, Vilnius, Lithuania, 2013.
    10. 10)
      • 10. Chi, S., Vogel, C., Singerl, P.: ‘The frequency spectrum of polar modulated PWM signals and the image problem’. Proc. IEEE Int. Conf. on Electronics, Circuits and Systems, Athens, Greece, 2010, pp. 679682.
    11. 11)
      • 11. Nuyts, P.A.J., Reynaert, P., Dehaene, W.: ‘Frequency-domain analysis of digital PWM-based RF modulators for flexible wireless transmitters’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2014, 61, (1), pp. 238246.
    12. 12)
      • 12. Chi, S., Singerl, P., Vogel, C.: ‘Efficiency optimization for burst-mode multilevel radio frequency transmitters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2013, 60, (7), pp. 19011914.
    13. 13)
      • 13. Razavi, B.: ‘RF microelectronics, chapter 12’ (Prentice-Hall New Jersey, Upper Saddle River, NJ, USA, 2011, 2nd edn.).
    14. 14)
      • 14. Landin, P.N., Fritzin, J., Moer, W.V., et al: ‘Modeling and digital predistortion of class-D outphasing RF power amplifiers’, IEEE Trans. Microw. Theory Tech., 2012, 60, (6), pp. 19071915.
    15. 15)
      • 15. Hausmair, K., Chi, S., Singerl, P., et al: ‘Aliasing-free digital pulse-width modulation for burst-mode RF transmitters’, IEEE Trans. Circuits Syst. I, Regul.Pap., 2013, 60, (2), pp. 415427.
    16. 16)
      • 16. Haque, M.F.U., Pasha, M.T., Johansson, T.: ‘Aliasing-compensated polar PWM transmitter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2017, 64, (8), pp. 912916.
    17. 17)
      • 17. Haque, M.F.U., Johansson, T., Liu, D.: ‘Modified band-limited pulse-width modulated polar transmitter’, Int. Symp. on Microwave and Optical Technology, Dresden, Germany, 2015.
    18. 18)
      • 18. Nuyts, P.A.J., Singerl, P., Dielacher, F., et al: ‘A fully digital delay line based GHz range multimode transmitter front-end in 65-nm CMOS’, IEEE J. Solid-State Circuits, 2012, 47, (7), pp. 16811692.
    19. 19)
      • 19. Volder, J.E.: ‘The CORDIC trigonometric computing technique’, IRE Trans. Electron. Comput., 1959, 8, (3), pp. 330334.
    20. 20)
      • 20. Kulkarni, S., Kazi, I., Seebacher, D., et al: ‘Multi-standard wideband OFDM RF-PWM transmitter in 40 nm CMOS’, European Solid-State Circuits Conference (ESSCIRC), Graz, Austria, 2015, pp. 8891.
    21. 21)
      • 21. Zulinski, R.E., Steadman, J.W.: ‘Class E power amplifiers and frequency multipliers with finite DC-feed inductance’, IEEE Trans. Circuits Syst., 1987, 34, (9), pp. 10741087.
    22. 22)
      • 22. Raab, F.H.: ‘Effects of circuit variations on the class E tuned power amplifier’, IEEE J. Solid-State Circuits, 1978, 13, (2), pp. 239247.
    23. 23)
      • 23. Singhal, N., Nidhi, N., Patel, R., et al: ‘A zero-voltage-switching contour-based power amplifier with minimal efficiency degradation under back-off’, IEEE Trans. Microw. Theory Tech., 2011, 59, (6), pp. 15891598.
    24. 24)
      • 24. Chi, S., Hausmair, K., Vogel, C.: ‘Coding efficiency of bandlimited PWM based burst-mode RF transmitters’. Proc. Int. Symp. on Circuits and Systems, Beijing, China, 2013, pp. 22632266.
    25. 25)
      • 25. Fritzin, J., Svensson, C., Alvandpour, A.: ‘Design and analysis of a class-D stage with harmonic suppression’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (6), pp. 11781186.

Related content

This is a required field
Please enter a valid email address