http://iet.metastore.ingenta.com
1887

Performance study of optical resonator-based filter architectures

Performance study of optical resonator-based filter architectures

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A comparative study on characteristics and performance of optical ring resonator architectures, i.e. circular, racetrack, and triangular-shaped optical resonators, have been carried out here. Constituent material used for designing these resonators is an silicon on insulator wafer consisting of thin silicon (Si) layer on silica (SiO2) layer carried on a thick Si substrate having group index of 2.379. All the resonators are so designed that all provide equal free spectral range (FSR) of 25.2 THz. All these double-ring architectures have been analysed using delay line signal processing technique in z-domain and Mason's gain formula. FSR expansion has been achieved employing the Vernier principle. Various performance defining parameters have been also investigated.

References

    1. 1)
      • 1. Chuang, R.W., Hsu, M.-T.: ‘Dense multi-channel optical waveguide switch based on micro ring resonators’, J. Lightwave Technol., 2014, 32, (8), pp. 15701577.
    2. 2)
      • 2. Calò, G., Petruzzelli, V.: ‘Compact design of photonic crystal ring resonator 2-2 routers as building blocks for photonic networks on chip’, J. Opt. Soc. Am., 2014, B31, (3), pp. 517525.
    3. 3)
      • 3. Hong, J., Enami, Y.: ‘Analysis of optical time domain de-multiplexer using micro ring resonators’, Opt. Rev., 2010, 17, (6), pp. 532535.
    4. 4)
      • 4. Kokubun, Y., Kato, T.: ‘Series-coupled and parallel-coupled add/drop filters and FSR extension’, in: ‘Photonic micro resonator research and applications’ (Springer, London, 2010), pp. 87113.
    5. 5)
      • 5. Klein, E.J.: ‘Densely integrated micro-ring resonator based components for fiber-to-the-home applications’ (University of Twente, Enschede, The Netherlands, 2007).
    6. 6)
      • 6. Fakhrurrozi, , Santoso, S.A., Nur, S.O., et al: ‘Temperature effects on parallel cascaded silica based micro ring resonator’. 2013 International Conference of Information and Communication Technology (ICoICT), Bandung, Indonesia, 2013, pp. 367371, ISSN- 978-1-4673-4992-5.
    7. 7)
      • 7. Yang, Z., Zhou, Q., Long, W., et al: ‘Study of asymmetric U shaped resonator at terahertz frequencies’, Opt. Commun., 2016, 368, pp. 119122.
    8. 8)
      • 8. Poon, J.K.S., Scheuer, J., Xu, Y., et al: ‘Designing coupled-resonator optical waveguide delay lines’, Opt. Soc. Am., 2004, 21, (9), pp. 16651673.
    9. 9)
      • 9. Niehusmann, J., Vorckel, A., Bolivar, P.H., et al: ‘Ultrahigh quality factor silicon-on-insulator microring resonator’, Opt. Lett., 2004, 29, pp. 28612863.
    10. 10)
      • 10. Little, B.E., Foresi, J.S., Steinmeyer, G., et al: ‘Ultra compact Si-SiO2 microirng resonator optical channel dropping filters’, IEEE Photonics Technol. Lett., 1998, 10, pp. 545551.
    11. 11)
      • 11. Xiaoleo, , Wang, P., Chen, C., et al: ‘Plasmonic racetrack resonator with high extinction ratio under critical coupling condition’, J. Appl. Phys., 2010, 107, p. 124517.
    12. 12)
      • 12. Kim, D.H., Oh, G.Y., Choi, W.K., et al: ‘Extreme small multimode interference coupled triangular resonator with sharp angle of incidence’, Opt. Express, 2008, 16, (25), pp. 2105321058.
    13. 13)
      • 13. Bogaerts, W., Dumon, P., Thourhout, D.V., et al: ‘Compact wavelength-selective functions in silicon-on-insulator photonic wires’, IEEE J. Sel. Top. Quantum Electron., 2006, 12, (6), pp. 13941401.
    14. 14)
      • 14. Sheng, Z., Dai, D., He, S., et al: ‘Comparative study of losses in ultra sharp silicon-on-insulator nanowire bends’, IEEE J. Sel. Top. Quantum Electron., 2009, 15, (5), pp. 14061412.
    15. 15)
      • 15. Vlasov, Y., McNab, S.: ‘Losses in single-mode silicon-on-insulator strip waveguides and bends’, Opt. Express, 2004, 12, (8), pp. 16221631.
    16. 16)
      • 16. Dey, S., Mandal, S.: ‘Modeling and analysis of quadruple optical ring resonator performance as optical filter using Vernier principle’, Opt. Commun., 2012, 285, pp. 439446.
    17. 17)
      • 17. Xia, F., Sekaric, L., Vlasov, Y.A.: ‘Mode conversion losses in silicon-on-insulator photonic wire based racetrack resonators’, Opt. Express, 2006, 14, (9), p. 3872.
    18. 18)
      • 18. Mason, S.J.: ‘Feedback properties of signal flow graphs’, Proc. IRE, 1975, 44, (7), pp. 920926.
    19. 19)
      • 19. Madsen, C.K., Zhao, J.H.: ‘Optical filter design and analysis, a signal processing approach’ (John Wiley & Sons, Inc., New York, 1999).
    20. 20)
      • 20. Ito, H., Ishikura, N., Baba, T., et al: ‘Triangular shaped coupled micro ring for robust wavelength multi/ de-multiplexing in Si photonics’, J. Lightwave Technol., 2015, 33, (2), pp. 304310.
    21. 21)
      • 21. Dey, S., Mandal, S.: ‘Performance of a wide FSR optical double ring resonator’. IEEE Conf., Electro-2009, Varanasi, India, pp. 564567.
    22. 22)
      • 22. Dey, S., Mandal, S.: ‘Wide free-spectral-range triple ring resonator as optical filter’, Opt. Eng. SPIE, 2011, 50, (8), 084601-(1-9).
    23. 23)
      • 23. Darmawan, S., Landobasa, Y.M., Chin, M.K., et al: ‘Pole-zero dynamics of high-order ring resonator filters’, J. Lightwave Technol., 2007, 25, (6), pp. 15681575.
    24. 24)
      • 24. Chamorro-Posada, P., Fraile-Pelaez, F.J., Diaz-Otero, F.J., et al: ‘Micro-ring chains with high-order resonances’, J. Lightwave Technol., 2011, 29, (10), pp. 15141521.
    25. 25)
      • 25. Tobing, L.Y.M., Pieter, D.: ‘Fundamental principles of operation and notes on fabrication of photonic micro resonators’, Photonic Micro Ring Res. Appl., 2010, 156, Springer, Chapter 1, pp. 127.
    26. 26)
      • 26. Heebner, J.E., Wong, V., Schweinsberg, A., et al: ‘Optical transmission characteristics of fibre ring resonators’, IEEE J. Quantum Electron., 2004, 40, (6), pp. 726730.
    27. 27)
      • 27. Rabus, D.G., Hamacher, M., Troppenz, U., et al: ‘High-Q channel-dropping filters using ring resonators with integrated SOAs’, IEEE Photonics Technol. Lett., 2002, 14, (10), pp. 14421444.
    28. 28)
      • 28. Chremmos, I., Schwelb, O., Uzunoglu, N., et al: ‘Photonic micro resonator research and applications’ (Springer Publications, LLC, 2010).
    29. 29)
      • 29. Liang, X., Hu, F., Yan, Y., et al: ‘Secure thermal infrared communications using engineered blackbody radiation’, 4 Nat. Sci. Rep., 2014, p. 5245.
    30. 30)
      • 30. Dhilon, S.S., Vitiello, M.S., Linfield, E.H., et al: ‘The 2017 terahertz science and technology roadmap’, J. Phys. D, Appl. Phys., 2017, 50, pp. 149.
    31. 31)
      • 31. Zangeneh-Nejad, F., Safian, R.: ‘A graphene-based THz ring resonator for label-free sensing’, IEEE Sens. J., 2016, 16, (11), pp. 43384344.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.0087
Loading

Related content

content/journals/10.1049/iet-cds.2018.0087
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address