access icon free Real-time temperature compensation for tunable cavity-based BPFs and BSFs

In this study, a real-time temperature compensation control system for tunable high-Q cavity-based filters are designed, implemented, and experimentally validated. Both bandpass (BPFs) (700–1000 MHz) and bandstop filters (BSFs) (1300–1600 MHz) with high-Q () resonators are monitored in real time to compensate for any temperature variations. The monitoring scheme includes additional resonators that share the same tuning piezoelectric actuators with the resonators of the radio frequency (RF) filters. An oscillator is coupled with each monitoring resonator resulting in an output signal at a frequency directly linked to the RF resonance. Each monitoring resonator is controlled by a user-provided input through a closed-loop in real time. The presented system is capable of compensating for temperature variations in the and range. The average system resolution varies from 0.23 to 9 MHz, depending on temperature, with a 1 ms sensing period. The closed-loop frequency shift is 6.5 MHz (0.93%) and 8.75 MHz (0.65%) for the BPFs and BSFs, respectively, in the to temperature range. This is to be compared with the open-loop change of 256 MHz (36%) and 590 MHz (44%) for the same temperature change. The monitoring oscillator power leakage to the RF cavities is optimised and measured to −101 dBm.

Inspec keywords: resonator filters; piezoelectric actuators; band-stop filters; microwave filters; UHF filters; temperature control; band-pass filters

Other keywords: piezoelectric actuators; RF filters; frequency 0.23 MHz to 9.0 MHz; frequency 1300.0 MHz to 1600.0 MHz; time 1.0 ms; real-time temperature compensation control system; Q resonators; frequency 6.5 MHz; frequency 8.75 MHz; BSFs; frequency 700.0 MHz to 1000.0 MHz; Q cavity-based filters; BPFs; real-time temperature compensation; frequency 590.0 MHz; frequency 256.0 MHz; RF resonance

Subjects: Waveguide and microwave transmission line components; Radio links and equipment; Piezoelectric devices; Passive filters and other passive networks

References

    1. 1)
      • 4. Yang, Z., Peroulis, D.: ‘A 23–35 GHz MEMS tunable all-silicon cavity filter with stability characterization up to 140 million cycles’. IEEE MTT-S Int. Microwave Symp. Digest, Tampa, FL, June 2014.
    2. 2)
      • 24. Lee, J., Naglich, E., Sigmarsson, H., et al: ‘Tunable inter-resonator coupling structure with positive and negative values and its application to the field-programmable filter array (FPFA)’, IEEE Trans. Microw. Theory Tech., 2011, 59, (12), pp. 33893400.
    3. 3)
      • 10. Zahirovic, N., Mansour, R.: ‘Sequential tuning of coupled resonator filters using Hilbert transform derived relative group delay’. IEEE MTT-S Int. Microwave Symp. Digest, Atlanta, GA, June 2008, pp. 739742.
    4. 4)
      • 9. Liu, X., Fruehling, A., Katehi, L., et al: ‘Capacitive monitoring of electrostatic MEMS tunable evanescent-mode cavity resonators’. European Microwave Integrated Circuits Conf., Manchester, UK, October 2011, pp. 466469.
    5. 5)
      • 16. Minase, J., Lu, T., Cazzolato, B., et al: ‘A review, supported by experimental results, of voltage, charge and capacitor insertion method for driving piezoelectric actuators’, Prec. Eng., 2010, 34, pp. 692700.
    6. 6)
      • 14. Abu Khater, M., Wu, Y., Peroulis, D.: ‘Tunable cavity-based diplexer with spectrum-aware automatic tuning’, IEEE Trans. Microw. Theory Tech., 2016, 65, (3), pp. 934944.
    7. 7)
      • 26. Yang, Z., Peroulis, D.: ‘A 20–40 GHz tunable MEMS bandpass filter with enhanced stability by gold-vanadium micro-corrugated diaphragms’. IEEE MTT-S Int. Microwave Symp. Digest, San Francisco, CA, May 2016, pp. 13.
    8. 8)
      • 17. Cameron, R., Kudsia, C., Mansour, R.: ‘Microwave filters for communications systems: fundamentals, design, and applications’ (Wiley, Hoboken, NJ, USA, 2007).
    9. 9)
      • 12. Abu Khater, M., Peroulis, D.: ‘Pulse injection for real-time monitoring of tunable high-Q filters’, Microw. Opt. Technol. Lett., 2014, 56, (3), pp. 761764.
    10. 10)
      • 11. De Luis, J., Gu, Q., Morris, A., et al: ‘A novel frequency control loop for tunable notch filters’, IEEE Trans. Microw. Theory Tech., 2011, 59, (9), pp. 22652274.
    11. 11)
      • 7. Wu, Y., Abu Khater, M., Peroulis, D.: ‘Real-time temperature compensation control system for tunable cavity-based high-Q filters’. IEEE MTT-S Int. Microwave Symp. Digest, Phoenix, AZ, May 2015.
    12. 12)
      • 19. Corrales, E., de Paco, P., Menendez, O.: ‘Direct coupling matrix synthesis of bandstop filters’, Prog. Electromagn. Res. Lett., 2011, 27, pp. 8591.
    13. 13)
      • 20. Kudsia, C., Cameron, R., Tang, W.: ‘Innovations in microwave filters and multiplexing networks for communications satellite systems’, IEEE Trans. Microw. Theory Tech., 2011, 40, (6), pp. 34013409.
    14. 14)
      • 23. Lee, H., Park, K., Cristman, P., et al: ‘A low-noise oscillator based on a multi-membrane CMUT for high sensitivity resonant chemical sensors’. IEEE Int. Conf. Micro Electro Mechanical Systems, Sorrento, Italy, January 2009, pp. 761764.
    15. 15)
      • 2. Park, S., Reines, I., Patel, C., et al: ‘High-Q RF-MEMS 4–6 GHz tunable evanescent-mode cavity filter’, IEEE Trans. Microw. Theory Tech., 2010, 58, (2), pp. 381389.
    16. 16)
      • 18. Goel, A., Analui, B., Hashemi, H.: ‘Tunable duplexer with passive feed-forward cancellation to improve the RX–TX isolation’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (2), pp. 536544.
    17. 17)
      • 5. Huang, F., Fouladi, S., Mansour, R.: ‘High-Q tunable dielectric resonator filters using MEMS technology’, IEEE Trans. Microw. Theory Tech., 2011, 59, (12), pp. 34013409.
    18. 18)
      • 6. Yuceer, M.: ‘A reconfigurable microwave combline filter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (1), pp. 8488.
    19. 19)
      • 25. Hickle, M., Peroulis, D.: ‘Octave-tunable constant absolute bandwidth bandstop filter utilizing a novel passively-compensated coupling method’. IEEE MTT-S Int. Microwave Symp. Digest, San Francisco, CA, May 2016, pp. 14.
    20. 20)
      • 22. Naglich, E., Lee, J., Peroulis, D., et al: ‘Bandpass–bandstop filter cascade performance over wide frequency tuning ranges’, IEEE Trans. Microw. Theory Tech., 2010, 58, (12), pp. 39453953.
    21. 21)
      • 1. Liu, X., Katehi, L., Chappell, W., et al: ‘High-Q tunable microwave cavity resonators and filters using SOI-based RF MEMS tuners’, J. Microelectromech. Syst., 2010, 19, (4), pp. 774784.
    22. 22)
      • 15. Evans, R., Griesbach, J., Messner, W.: ‘Piezoelectric microactuator for dual stage control’, IEEE Trans. Magn., 1999, 35, pp. 977982.
    23. 23)
      • 13. Abu Khater, M., Peroulis, D.: ‘Real-time feedback control system for tuning evanescent-mode cavity filters’, IEEE Trans. Microw. Theory Tech., 2016, 64, (9), pp. 28042813.
    24. 24)
      • 8. Sigmarsson, H., Christianson, A., Joshi, H., et al: ‘In-situ control of tunable evanescent-mode cavity filters using differential mode monitoring’. IEEE MTT-S Int. Microwave Symp. Digest, Boston, MA, June 2009, pp. 633636.
    25. 25)
      • 3. Naglich, E., Sinani, M., Moon, S., et al: ‘High-Q MEMS-tunable W-band bandstop resonators’. IEEE MTT-S Int. Microwave Symp. Digest, Tampa, FL, June 2014.
    26. 26)
      • 21. Lee, J., Naglich, E., Sigmarsson, H., et al: ‘New bandstop filter circuit topology and its application to design of a bandstop-to-bandpass switchable filter’, IEEE Trans. Microw. Theory Tech., 2013, 61, (3), pp. 11141123.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2018.0019
Loading

Related content

content/journals/10.1049/iet-cds.2018.0019
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading