Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Broadband reconfigurable matching network using a non-uniform transmission line

In this study, the authors propose the use of distributed elements interconnected with switches to construct a reconfigurable matching network (RMN). Several RMNs are constructed using tunable lumped elements. However, this technique increases the system complexity because of the use of digital-to-analogue converters and synthesis algorithms. In this study, the proposed RMN employs a non-uniform transmission line with adjustable characteristic impedances, which are controlled by opening or closing the switches. While previous studies on non-uniform transmission lines have aimed to investigate the fixed configurations, this topology is designed to be an RMN that satisfies the design challenges. The maximum dimension is 0.2 times the guided wavelength of the low operational frequency, and five switches are used; however, the matchable impedances cover an extensive range of the Smith chart, and the RMN successfully tunes inherently unmatched antennas to operate at a target frequency band that depicts a fractional bandwidth of 60%. Additionally, the evaluated results depict that the fabricated RMN illustrates low insertion loss and high transducer gain and that it achieves both antenna-mismatch compensation and antenna-bandwidth extension.

References

    1. 1)
      • 12. Simons, R.N., Lee, R.Q.: ‘Impedance matching of tapered slot antenna using a dielectric transformer’, Electron. Lett., 1998, 34, (24), pp. 22872289.
    2. 2)
      • 10. Sánchez-Pérez, C., Mingo, J., García-Dúcar, P., et al: ‘Performance improvement of mobile DVB-H terminals using a reconfigurable impedance tuning network’, IEEE Trans. Consum. Electron., 2009, 55, (4), pp. 18751882.
    3. 3)
      • 3. Yumin, L., Peroulis, D., Mohammadi, S., et al: ‘A MEMS reconfigurable matching network for a class AB amplifier’, IEEE Microw Wirel. Compon. Lett., 2003, 13, (10), pp. 437439.
    4. 4)
      • 9. Bezooijen, A., Jongh, M., Straten, F., et al: ‘Adaptive impedance-matching techniques for controlling L networks’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2010, 57, (2), pp. 495505.
    5. 5)
      • 16. Roy, M.L., Perennec, A., Toutain, S., et al: ‘The continuously varying transmission-line technique – application to filter design’, IEEE Trans. Microw. Theory Tech., 1999, 47, (9), pp. 16801687.
    6. 6)
      • 7. Smith, N.J., Chen, C.-C., Volakis, J.L.: ‘An improved topology for adaptive agile impedance tuners’, IEEE Antennas Wirel. Propag. Lett., 2013, 12, pp. 9295.
    7. 7)
      • 21. Jeong, H.T., Kim, J.E., Chang, I.S., et al: ‘Tunable impedance transformer using a transmission line with variable characteristic impedance’, IEEE Trans. Microw. Theory Tech., 2005, 53, (8), pp. 25872593.
    8. 8)
      • 13. Deslandes, D., Boukadoum, M.: ‘Nonuniform microstrip lines analysis using neural networks’. 8th IEEE Int. New Circuits and Systems Conf. (NEWCAS), Montreal, Canada, June 2010, pp. 221224.
    9. 9)
      • 6. McIntosh, C.E., Pollard, R.D., Miles, R.E.: ‘Novel MMIC source-impedance tuners for on-wafer microwave noise-parameter measurements’, IEEE Trans. Microw. Theory Tech., 1999, 47, (2), pp. 125131.
    10. 10)
      • 11. Papapolymerou, J., Lange, K.L., Goldsmith, C.L., et al: ‘Reconfigurable double-stub tuners using MEMS switches for intelligent RF front-ends’, IEEE Trans. Microw. Theory Tech., 2003, 51, (1), pp. 271278.
    11. 11)
      • 1. Sánchez-Pérez, C., Mingo, J., García-Dúcar, P., et al: ‘Dynamic load modulation with a reconfigurable matching network for efficiency improvement under antenna mismatch’, IEEE Trans. Circuits Syst. II., Exp. Pap., 2011, 58, (12), pp. 892896.
    12. 12)
      • 23. Tuysuz, B., Urbina, J., Lind, F.D.: ‘Development of a passive VHF radar system using software-defined radio for equatorial plasma instability studies’, Radio Sci.., 2013, 48, (4), pp. 416426.
    13. 13)
      • 2. Sjöblom, P., Sjöland, H.: ‘An adaptive impedance tuning CMOS circuit for ISM 2.4 GHz band’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (6), pp. 11151124.
    14. 14)
      • 4. El-Nozahi, M., Sánchez-Sinencio, E., Entesari, K.: ‘A CMOS low-noise amplifier with reconfigurable input matching network’, IEEE Trans. Microw. Theory Tech., 2009, 57, (5), pp. 10541062.
    15. 15)
      • 8. Whatley, R.B., Zhou, Z., Melde, K.L.: ‘Reconfigurable RF impedance tuner for match control in broadband wireless devices’, IEEE Trans. Antennas Propag., 2006, 54, (2), pp. 470478.
    16. 16)
      • 19. Casado, F., Arriola, A., Parrón, J., et al: ‘Reconfigurable matching network for 2.45 GHz printed IFA on metallic environments’. Loughborough Antennas & Propagation Conf. (LAPC), Loughborough, UK, November 2012, pp. 14.
    17. 17)
      • 5. Vaha-Heikkila, T., Lahdes, M., Kantanen, M., et al: ‘On-wafer noise-parameter measurements at W-band’, IEEE Trans. Microw. Theory Tech., 2003, 51, (6), pp. 16211628.
    18. 18)
      • 18. Po, F.C.W., Foucauld, E., Morche, D., et al: ‘A novel method for synthesizing an automatic matching network and its control unit’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (9), pp. 22252233.
    19. 19)
      • 22. Chen, Y.S., Liu, P.A.: ‘A self-structuring impedance matcher for in-vehicle digital audio broadcasting applications’, IEEE Trans. Antennas Propag., 2017, 65, (8), pp. 42204229.
    20. 20)
      • 15. Lu, K.: ‘An efficient method for analysis of arbitrary nonuniform transmission lines’, IEEE Trans. Microw. Theory Tech., 1997, 45, (1), pp. 914.
    21. 21)
      • 14. Khalaj-Amirhosseini, M.: ‘Closed form solutions for nonuniform transmission lines’, Prog. Electromagn. Res. B., 2008, 2, pp. 243258.
    22. 22)
      • 20. Domingue, F., Fouladi, S., Kouki, A.B., et al: ‘Design methodology and optimization of distributed MEMS matching networks for low frequency applications’, IEEE Trans. Microw. Theory Tech., 2009, 57, (12), pp. 30303041.
    23. 23)
      • 17. Jiang, B., Smith, J.R., Philipose, M., et al: ‘Energy scavenging for inductively coupled passive RFID systems’, IEEE Trans. Instrum. Meas., 2007, 56, (1), pp. 118125.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0512
Loading

Related content

content/journals/10.1049/iet-cds.2017.0512
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address