Analytical modelling and performance analysis of gate engineered TG silicon-on-nothing metal–oxide–semiconductor field-effect transistor

Analytical modelling and performance analysis of gate engineered TG silicon-on-nothing metal–oxide–semiconductor field-effect transistor

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

This study presents a three-dimensional (3D) analytical model of triple material tri-gate silicon-on-nothing metal–oxide–semiconductor field-effect transistor. The performance of the device by varying the different device parameters as well as the device's immunity toward the various short channel effects such as Drain-induced barrier lowering (DIBL), hot carrier effect, threshold-voltage roll-off and subthreshold swing are investigated. The 3D Poisson's equation with appropriate boundary conditions is solved considering the parabolic potential approximation method to obtain the surface potential distribution. In addition, the calculations for threshold voltage and electric field are also done and the results obtained are verified using a 3D device simulator, namely ATLAS from SILVACO.


    1. 1)
      • 1. D'Agostino, F., Quercia, D.: ‘Introduction to VLSI design (EECS 467), short-channel effects in MOSFETs’, 11th December 2000.
    2. 2)
      • 2. Ajayan, J., Nirmal, D., Prajoon, P., et al: ‘Analysis of nanometer-scale InGaAs/InAs/InGaAs composite channel MOSFETs using high-K dielectrics for high speed applications’, Int. J. Electron. Commun., 2017, 79, pp. 151157, doi:
    3. 3)
      • 3. Rechem, D., Latreche, S.: ‘The effect of short channel on nanoscale SOI MOSFETs’, Spec. Issue (Microelectron.) Afr. Phys. Rev., 2008, 2, pp. 8081.
    4. 4)
      • 4. Rajendran, K., Samudra, G.: ‘A simple modelling of device speed in double-gate SOI MOSFETs’, Microelectron. J., 2000, 31, (4), pp. 255259.
    5. 5)
      • 5. Naskar, S., Sarkar, S.K.: ‘Quantum analytical model for inversion charge and threshold voltage of short-channel dual-material double-gate SON MOSFET’, IEEE Trans. Electron. Devices, 2013, 60, (9), pp. 27342740.
    6. 6)
      • 6. Goel, K., Saxena, M., Gupta, M., et al: ‘Modeling and simulation of a nanoscale three region tri-material gate stack (TRIMGAS) MOSFET for improved carrier transport efficiency and reduced hot-electron effects’, IEEE Trans. Electron. Devices, 2006, 53, (7), pp. 16231633.
    7. 7)
      • 7. Deb, S., Basanta Singh, N., Islam, N., et al: ‘Work function engineering with linearly graded binary metal alloy gate electrode for short-channel SOI MOSFET’, IEEE Trans. Nanotechnol., 2012, 11, (3), pp. 472478.
    8. 8)
      • 8. Cartwright, J.: ‘Intel enters the third dimension’, Nature, 2011, doi:10.1038/news.2011.274. Available at, accessed March 2018.
    9. 9)
      • 9. Ghanatian, H., Hosseini, S.E.: ‘Analytical modeling of subthreshold swing in undoped trigate SOI MOSFETs’, J. Comput. Electron., 2016, 15, (2), pp. 508515.
    10. 10)
      • 10. Banerjee, P., Sarkar, A., Sarkar, S.K.: ‘Exploring the short channel characteristics and performance analysis of DMDG SON MOSFET’, Microelectron. J., 2017, 67, pp. 5056.
    11. 11)
      • 11. Reddy, G.V., Kumar, M.J.: ‘A new dual-material double-gate (DMDG) nanoscale SOI MOSFET – two-dimensional analytical modeling and simulation’, IEEE Trans. Electron. Devices, 2005, 4, (2), pp. 260268.
    12. 12)
      • 12. Young, K.K.: ‘Short-channel effect in fully depleted SOI MOSFETs’, IEEE Trans. Electron. Devices, 1989, 36, (2), pp. 399402.
    13. 13)
      • 13. Deb, S., Singh, N.B., Das, D., et al: ‘Analytical model of threshold voltage and sub-threshold slope of SOI and SON MOSFETs: a comparative study’, J. Electron. Devices, 2010, 8, pp. 300309.
    14. 14)
      • 14. Goel, E., Kumar, S., Singh, K., et al: ‘2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs’, IEEE Trans. Electron. Devices, 2016, 63, (3), pp. 966973.
    15. 15)
      • 15. Pal, A., Sarkar, A.: ‘Analytical study of dual-material surrounding gate MOSFET to suppress short channel effects (SCEs)’, Eng. Sci. Technol. Int. J., 2014, 17, pp. 205212.
    16. 16)
      • 16. Saha, P., Sarkhel, S., Sarkar, S.K.: ‘Compact 2D threshold voltage modeling and performance analysis of ternary metal alloy work-function-engineered double-gate MOSFET’, J. Comput. Electron. Springer, 2017, 16, (3), pp. 648657.
    17. 17)
      • 17. Banerjee, P., Sarkar, S.K.: ‘3D analytical modeling of dual material triple gate silicon-on nothing MOSFET’, IEEE Trans. Electron. Devices, 2017, 64, (2), pp. 368375.
    18. 18)
      • 18. Banerjee, P., Sarkar, S.K.: ‘3-D analytical modeling of high-k gate stack dual-material tri-gate strained silicon-on-nothing MOSFET with dual-material bottom gate for suppressing short channel effects’, J. Comput. Electron., 2017, 16, pp. 631639, doi: 10.1007/s10825-017-1002-y.
    19. 19)
      • 19. Saramekala, G.K., Santra, A., Kumar, M., et al: ‘Analytical subthreshold current and subthreshold swing models of short-channel dual-metal-gate (DMG) fully-depleted recessed-source/drain (Re-S/D) SOI MOSFETs’, J. Comput. Electron., 2014, 13, pp. 467476.
    20. 20)
      • 20. ATLAS User's Manual, SILVACO Int., Santa Clara, CA, USA, 2015.

Related content

This is a required field
Please enter a valid email address