Design procedure for multifinger MOSFET two-stage OTA with shallow trench isolation effect

Design procedure for multifinger MOSFET two-stage OTA with shallow trench isolation effect

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Nanoscale complementary metal–oxide–semiconductor (CMOS) circuit design extensively employs multifinger layout technique to alleviate the performance degrading parasitic and mismatch effects that are typically observed with single-finger layout. However, a continuous increase in the number of fingers accompanied by a simultaneous decrease in their finger width could lead to the penalty of a higher degree of variation in the MOSFET's small-signal parameters. It is due to the heightened shallow trench isolation (STI) stress that gets developed in such devices. The optimisation of circuit performance with the arbitrarily fixed number and width of fingers would be ambiguous. In this work, an analysis of current–voltage (IV) characteristics of a MOSFET as a function of number of fingers has been proposed. It was found that both the drain current and gate transconductance get affected by the number of fingers. The authors proposed a Miller-compensated two-stage [operational transconductance amplifier (OTA)] and common source amplifier by considering STI effect. It is also found that the parameters of the proposed design matched well with the set of desired specifications. Also, the area of multifinger MOSFET OTA is lowered by up to 60% relative to that from the conventional. All post-layout simulations were performed using standard UMC 65 nm CMOS technology.


    1. 1)
      • 1. Kulej, T.: ‘0.5-V bulk-driven CMOS operational amplifier’, IET Circuits Devices Syst., 2013, 7, (6), pp. 352360.
    2. 2)
      • 2. Ndiaye, C., Berthelon, R., Huard, V., et al: ‘Reliability compact modeling approach for layout dependent effects in advanced CMOS nodes’. 2017 IEEE Int. Reliability Physics Symp. (IRPS), no. 4C-4.1–4C-4.7, Monterey, CA, 2017.
    3. 3)
      • 3. Ndiaye, C., Huard, V., Bertholon, R., et al: ‘Layout dependent effect: impact on device performance and reliability in recent CMOS nodes’. 2016 IEEE Int. Integrated Reliability Workshop (IIRW), South Lake Tahoe, CA, October 2016, pp. 2428.
    4. 4)
      • 4. Liao, T., Zhang, L.: ‘Analog integrated circuit sizing and layout dependent effects: a review’, Microelectron. Solid State Electron., 2014, 3, (1A), pp. 1729.
    5. 5)
      • 5. Xue, J., Deng, Y., Ye, Z., et al: ‘A framework for layout-dependent STI stress analysis and stress-aware circuit optimization’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2012, 20, (3), pp. 498511.
    6. 6)
      • 6. Mohammed, I., El-Kenawy, K., Dessouky, M.: ‘Layout dependent effects mitigation in current mirrors’. 2016 Fourth Int. Japan-Egypt Conf. on Electronics, Communications and Computers (JEC-ECC), Cairo, Egypt, May 2016, pp. 107110.
    7. 7)
      • 7. Ou, H.C., Tseng, K.H., Liu, J.Y., et al: ‘Layout-dependent effects-aware analytical analog placement’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 2016, 35, (8), pp. 12431254.
    8. 8)
      • 8. Xue, J., Ye, Z., Deng, Y., et al: ‘Layout-dependent STI stress analysis and stress-aware RF/analog circuit design optimization’. 2009 IEEE/ACM Int. Conf. on Computer-Aided Design – Digest of Technical Papers, San Jose, CA, November 2009, pp. 521528.
    9. 9)
      • 9. Marella, S.K., Sapatnekar, S.S.: ‘The impact of shallow trench isolation effects on circuit performance’. 2013 IEEE/ACM Int. Conf. on Computer-Aided Design (ICCAD), San Jose, CA, November 2013, pp. 289294.
    10. 10)
      • 10. Yeh, K.L., Guo, J.C.: ‘A new method for layout-dependent parasitic capacitance analysis and effective mobility extraction in nanoscale multifinger MOSFETs’, IEEE Trans. Electron Devices, 2011, 58, (9), pp. 28382846.
    11. 11)
      • 11. Yeh, K.L., Guo, J.C.: ‘The impact of layout-dependent STI stress and effective width on low-frequency noise and high-frequency performance in nanoscale nMOSFETs’, IEEE Trans. Electron Devices, 2010, 57, (11), pp. 30923100.
    12. 12)
      • 12. Guo, J.C., Lo, Y.Z., Ou, J.-R.: ‘The impact of layout dependent effects on mobility and flicker noise in nanoscale multifinger nMOSFETs for RF and analog design’. 2016 IEEE MTT-S Int. Microwave Symp. (IMS), San Francisco, CA, May 2016, pp. 14.
    13. 13)
      • 13. Yeh, K.L., Guo, J.C.: ‘Layout-dependent stress effect on high-frequency characteristics and flicker noise in multifinger and donut MOSFETs’, IEEE Trans. Electron Devices, 2011, 58, (9), pp. 31403146.
    14. 14)
      • 14. Yeh, K.L., Chang, C.-S., Guo, J.C.: ‘Layout-dependent effects on high frequency performance and noise of sub-40 nm multi-finger n-channel and p-channel MOSFETs’. 2012 IEEE/MTT-S Int. Microwave Symp. Digest, Montreal, QC, June 2012, pp. 13.
    15. 15)
      • 15. Ku, C.Y., Yeh, K.L., Guo, J.C.: ‘The impact of layout dependent stress and gate resistance on high frequency performance and noise in multifinger and donut MOSFETs’. 2013 IEEE MTT-S Int. Microwave Symp. Digest (MTT), Seattle, WA, June 2013, pp. 13.
    16. 16)
      • 16. Yeh, K.L., Guo, J.C.: ‘Narrow-width effect on high-frequency performance and RF noise of Sub-40-nm multifinger nMOSFETs and pMOSFETs’, IEEE Trans. Electron Devices, 2013, 60, (1), pp. 109116.
    17. 17)
      • 17. Siu, S.-L., Tam, W.-S., Wong, H., et al: ‘Influence of multi-finger layout on the subthreshold behavior of nanometer mos transistors’, Microelectron. Reliab., 2012, 52, (8), pp. 16061609, iCMAT 2011 – Reliability and variability of semiconductor devices and ICs.
    18. 18)
      • 18. Sharma, A.K., Mishra, N., Alam, N., et al: ‘Pre-layout estimation of performance and design of basic analog circuits in stress enabled technologies’. 2015 19th Int. Symp. on VLSI Design and Test, Ahmedabad, India, June 2015, pp. 16.
    19. 19)
      • 19. Sharma, A., Alam, N., Dasgupta, S., et al: ‘Multifinger MOSFETs' optimization considering stress and INWE in static CMOS circuits’, IEEE Trans. Electron Devices, 2016, 63, (6), pp. 25172523.
    20. 20)
      • 20. Faricelli, J.V.: ‘Layout-dependent proximity effects in deep nanoscale CMOS’. IEEE Custom Integrated Circuits Conf. 2010, San Jose, CA, September 2010, pp. 18.
    21. 21)
      • 21. Zhang, X., Li, S., Moody, T., et al: ‘Multi-finger MOSFET low noise amplifier performance analysis’. NAECON 2014 – IEEE National Aerospace and Electronics Conf., Dayton, OH, June 2014, pp. 342345.
    22. 22)
      • 22. Chen, H.Y., Juan, M., Chen, H.H., et al: ‘Practical electrical parameter aware methodology for analog designers with emphasis on LDE aware for devices’. Technical Papers of 2014 Int. Symp. on VLSI Design, Automation and Test, Hsinchu, Taiwan, April 2014, pp. 14.
    23. 23)
      • 23. Elshawy, M., Dessouky, M.: ‘Incremental layout-aware analog design methodology’. 2015 IEEE Int. Conf. on Electronics, Circuits, and Systems (ICECS), Cairo, Egypt, December 2015, pp. 486489.
    24. 24)
      • 24. Lourenço, N., Martins, R., Canelas, A., et al: ‘Aida: layout-aware analog circuit-level sizing with in-loop layout generation’, Integr. VLSI J., 2016, 55, pp. 316329.
    25. 25)
      • 25. Hastings, A.: ‘Art of analog layout’ (Prentice Hall, New Jersey, 2001, 2nd edn.).
    26. 26)
      • 26. Mandal, C., Patra, A., Pandit, S.: ‘Nano-scale CMOS analog circuits: models and CAD techniques for high-level design’ (CRC Press, Boca Raton, 2014).
    27. 27)
      • 27. Allen, P.E., Holberg, D.R.: ‘CMOS analog circuit design’ (Oxford University Press, New York, NY, USA, 2002, 2nd edn.).
    28. 28)
      • 28. Mahattanakul, J., Chutichatuporn, J.: ‘Design procedure for two-stage CMOS opamp with flexible noise-power balancing scheme’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2005, 52, (8), pp. 15081514.
    29. 29)
      • 29. Palmisano, G., Palumbo, G., Pennisi, S.: ‘Design procedure for two-stage CMOS transconductance operational amplifiers: a tutorial’, Analog Integr. Circuits Signal Process., 2001, 27, (3), pp. 179189.
    30. 30)
      • 30. Silveira, F., Flandre, D., Jespers, P.G.A.: ‘A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA’, IEEE J. Solid-State Circuits, 1996, 31, (9), pp. 13141319.
    31. 31)
      • 31. Tsividis, Y.: ‘Operation and modeling of the MOS transistor’ (Oxford University Press, New York, 2011, 3rd edn.).
    32. 32)
      • 32. Baker, R.J.: ‘CMOS circuit design layout and simulation’ (John Wiley & Sons, Hoboken, 2008, 2nd edn.).
    33. 33)
      • 33. Binkley, D.M.: ‘Tradeoffs and optimization in analog CMOS design’ (John Wiley & Sons, Chichester, 2008, 1st edn.).

Related content

This is a required field
Please enter a valid email address