Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-power sample and hold circuits using current conveyor analogue switches

This study presents low-power sample and hold (S/H) circuits using second-generation current conveyor (CCII). Unlike previous S/H circuits, switch of the proposed S/H circuits can be obtained using CCII which works as current conveyor analogue switch (CCAS). The state of CCAS is controlled by sampling pulse that can be applied via its bias current source. The proposed S/H circuits offer low-power consumption, high-speed and absent from non-overlapping clock signal requirements. Three configurations of S/H circuit are proposed, namely single-ended S/H, differential S/H and serial-to-parallel S/H circuits. The proposed S/H circuits have been simulated using 0.18 µm complementary metal oxide semiconductor (CMOS) process from Taiwan semiconductor manufacturing company (TSMC). The simulation results are used to confirm the workability of the proposed structures.

References

    1. 1)
      • 50. Tangsrirat, W., Surakampontorn, W.: ‘Electronically tunable current-mode universal filter employing only plus-type current-controlled conveyors and grounded capacitors’, Circuits Syst. Signal Process., 2006, 25, pp. 701713.
    2. 2)
      • 48. Ferri, G., Stornelli, V., Fragnoli, M.: ‘An integrated improved CCII topology for resistive sensor application’, Analog Integr. Circuits Signal Process., 2006, 49, pp. 247250.
    3. 3)
      • 19. Centurelli, F., Monsurro, P., Pennisi, S., et al: ‘Design solutions for sample-and-hold circuits in CMOS nanometer technologies’, IEEE Trans. Circuits Syst. II Express Briefs, 2009, 56, pp. 459463.
    4. 4)
      • 22. Lee, T.-S., Lu, C.-C.: ‘A 250 MHz 11 bit 22 mW CMOS low-hold-pedestal fully differential sample-and-hold circuit’, Analog Integr. Circuits Signal Process., 2009, 58, pp. 105113.
    5. 5)
      • 20. Ferreira, L.H.C., Pimenta, T.C., Moreno, R.L.: ‘CMOS implementation of precise sample-and-hold circuit with self-correction of the offset voltage’, IEE Proc. Circuits Dev. Syst., 2005, 152, pp. 451455.
    6. 6)
      • 47. Razavi, B.: ‘Design of sample-and-hold amplifier for high-speed low-voltage A/D converters’. Proc. IEEE Custom Integrated Circuits Conf., USA, 1997, pp. 5966.
    7. 7)
      • 34. Stochino, G.: ‘Class AB wide dynamic range bipolar differential voltage-to-current converter with constant transconductance’, Electron. Lett., 1998, 34, pp. 173174.
    8. 8)
      • 33. Kiranon, W., Kumprasert, N.: ‘Square-rooting and vector summation circuits using current conveyors’, IEE Proc. Circuits Dev. Syst., 1998, 149, p. 139.
    9. 9)
      • 8. Razavi, B.: ‘Design of sample-and-hold amplifiers for high-speed low-voltage A/D converters’. Proc. IEEE 1997 Custom Integrated Circuits Conf., 1997, pp. 5966.
    10. 10)
      • 39. Monpapassorn, A.: ‘Chopper modulators using current conveyor analogue switches’, Analog Integr. Circuits Signal Process., 2005, 45, pp. 155162.
    11. 11)
      • 16. Vorenkamp, P., Verdaasdonk, J.P.M.: ‘Fully bipolar, 120-Msample/s 10-b track-and-hold circuit’, IEEE J. Solid-State Circuits, 1992, 27, pp. 988992.
    12. 12)
      • 13. Chatterjee, S., Kinget, P.R.: ‘A 0.5-V 1-Msps track-and-hold circuit with 60-dB SNDR’, IEEE J. Solid-State Circuits, 2007, 42, pp. 722729.
    13. 13)
      • 23. Sawigun, C., Serdijn, W.A.: ‘Analysis and design of a low-voltage, low-power, high-precision, class-AB current-mode subthreshold CMOS sample and hold circuit’, IEEE Trans. Circuits Syst. I, 2011, 58, pp. 16151626.
    14. 14)
      • 35. Ferri, G., De Marcellis, A., Di Carlo, C., et al: ‘A CCII-based low-voltage low-power read-out circuit for DC-excited resistive gas sensors’, IEEE Sens. J., 2009, 9, pp. 20352041.
    15. 15)
      • 46. Petraglia, A., Mitra, S.K.: ‘Analysis of mismatch effects among A/D converters in a time-interleaved waveform digitizer’, IEEE Trans. Instrum. Meas., 1991, 40, pp. 831835.
    16. 16)
      • 18. Baschirotto, A.: ‘A low-voltage sample-and-hold circuit in standard CMOS technology operating at 40 ms/s’, IEEE Trans. Circuits Syst. II Analog Digit. Signal Process., 2001, 48, pp. 394399.
    17. 17)
      • 3. Ishihara, N., Akazawa, Y.: ‘A monolithic 156 Mb/s clock and data recovery PLL circuit using the sample-and-hold technique’, IEEE J. Solid-State Circuits, 1994, 29, pp. 15661571.
    18. 18)
      • 44. Nonthaputha, T., Kumngern, M., Lerkvaranyu, S.: ‘CMOS sample-and-hold circuit using current conveyor analogue switch’. Proc. 2016 Int. Symp. Intelligent Signal Processing and Communication Systems (ISPACS), Thailand, 2016, pp. 14.
    19. 19)
      • 10. Shirazi, A.N., Mirhaj, S.A., Ashtiani, S.J., et al: ‘Linearity improvement of open-loop NMOS source-follower sample and hold circuits’, IET Circuits Dev. Syst., 2011, 5, pp. 17.
    20. 20)
      • 11. Seon, J.-K.: ‘A 10-b 120-MS/s CMOS track-and-hold amplifier’, Analog Integr. Circuits Signal Process., 2005, 44, pp. 5560.
    21. 21)
      • 36. Sagbas, M., Minaei, S., Ayten, U.E.: ‘Component reduced current-mode full-wave rectifier circuits using single active component’, IET Circuits Dev. Syst., 2016, 10, pp. 111.
    22. 22)
      • 31. Toumazou, C., Lidgey, F.J., Haigh, D.G.: ‘Analog IC design: the current-mode approach’ (Peter Peregrinus Ltd., London, 1990).
    23. 23)
      • 26. Ang, S.-S., Hoque, M.R., Chen, C.-C., et al: ‘A sample-and-hold current measurement integrated circuit for neural recording’, Int. J. Electron., 2006, 93, pp. 793803.
    24. 24)
      • 15. Xiang, Y., Xiangning, F., Hao, Z.: ‘Design of sample-and-hold circuit for a reconfigurable ADC’. Proc. of IEEE Int. Conf. on Computer Science and Service System, China, 2010, pp. 12761279.
    25. 25)
      • 30. Sedra, A., Smith, K.: ‘A second-generation current conveyor and its applications’, IEEE Trans. Circuit Theory, 1970, 17, pp. 132134.
    26. 26)
      • 27. Harb, A.: ‘A programmable full clock rectifier and sample-and-hold amplifier for biomedical applications’, Analog Integr. Circuits Signal Process., 2011, 67, pp. 8994.
    27. 27)
      • 6. Bushehri, E., Thiede, A., Staroselsky, V., et al: ‘Dual bridge 6 Gsample/s track and hold circuit in AlGaAs/GaAs/AlGaAs HEMT technology’, Electron. Lett., 1998, 34, pp. 934936.
    28. 28)
      • 45. Jenq, Y.C.: ‘Digital spectra of nonuniformly sampled signals: a robust sampling time offset estimation algorithm for ultra high-speed waveform digitizers using interleaving’, IEEE Trans. Instrum. Meas., 1990, 39, pp. 7175.
    29. 29)
      • 1. Maloberti, F.: ‘Data converters’ (Springer, The Netherlands, 2007).
    30. 30)
      • 28. Mahmoud, S.A., Nazzal, T.B.: ‘Sample and hold circuits for low-frequency signals in analog-to-digital converter’. Proc. 2015 Int. Conf. Information and Communication Technology Research, 2015, pp. 3639.
    31. 31)
      • 43. Nonthaputha, T., Kumngern, M.: ‘Programmable universal filters using current conveyor transconductance amplifiers’, J. Circuits Syst. Comput., 2017, 26, pp. 17501211750144.
    32. 32)
      • 14. Seon, J.-K.: ‘A noble track-and-hold amplifier with 10-b 120-MS/s’, Int. J. Electron., 2010, 97, pp. 729736.
    33. 33)
      • 49. Fabre, A., Saaid, O., Wiest, F., et al: ‘Current controlled bandpass filter based on translinear conveyors’, Electron. Lett., 1995, 31, pp. 17271728.
    34. 34)
      • 7. Vorenkamp, P., Verdaasdonk, J.P.M.: ‘Fully bipolar, 120-Msample/s 10–b track-and-hold circuit’, IEEE J. Solid-State Circuits, 1992, 27, pp. 988992.
    35. 35)
      • 51. Kumngern, M., Khateb, F., Phasukkit, P., et al: ‘ECCCII-based current-mode universal filter with orthogonal control of ωo and Q’, Radioengineering, 2014, 23, pp. 687696.
    36. 36)
      • 40. Monpapassorn, A.: ‘Programmable wide range voltage adder/subtractor and its application as an encoder’, IEE Proc. Circuits Dev. Syst., 2005, 152, pp. 697702.
    37. 37)
      • 9. Fiocchi, C., Gatti, U., Maloberti, F.: ‘Design issues on high-speed high-resolution track-and-holds in BiCMOS technology’, IEE Proc., Circuits Devices Syst., 2000, 147, pp. 100106.
    38. 38)
      • 17. Dai, L., Harjani, R.: ‘CMOS switched-op-amp-based sample-and-hold circuit’, IEEE J. Solid-State Circuits, 2000, 35, pp. 109113.
    39. 39)
      • 12. Seon, J.-K., Nam, K.H., Kang, S.H., et al: ‘A simple and accurate track-and-hold circuit using operational transconductance amplifier’. Proc. IEEE Int. Conf. Mixed Design of Integrated Circuits and Systems, Poland, 2007, pp. 215218.
    40. 40)
      • 52. Khateb, F., Jaikla, W., Kubanek, D., et al: ‘Electronically tunable voltage-mode quadrature oscillator based on high performance CCCDBA’, Analog Integr. Circuits Signal Process., 2013, 74, pp. 499505.
    41. 41)
      • 53. Jaikla, W., Khateb, F., Siripongdee, S., et al: ‘Electronically tunable current-mode biquad filter employing CCCDTAs and grounded capacitors with low input and high output impedance’, Int. J. Electron. Commun., 2013, 67, pp. 10051009.
    42. 42)
      • 2. Goldberg, J.M., Sandler, M.B.: ‘New high accuracy pulse width modulation based digital-to-analogue convertor/power amplifier’, IEE Proc. Circuits Dev. Syst., 1994, 141, pp. 315324.
    43. 43)
      • 42. Kumngern, M., Torteanchai, U.: ‘CMOS programmable P, PI, PD and PID controller circuit using CCTAs’. Proc. 15th Int. Conf. Electronics, Information, and Communication (ICEIC), Vietnam, 2016, pp. 14.
    44. 44)
      • 37. Premont, C., Abouchi, N., Grisel, R., et al: ‘A current conveyor-based high-frequency analog switch’, IEEE Trans. Circuits Syst. I, 1998, 45, pp. 298300.
    45. 45)
      • 5. Razavi, B.: ‘Design of a 100-MHz 10-mW 3-V sample-and-hold amplifier in digital bipolar technology’, IEEE J. Solid-State Circuits, 1995, 30, pp. 724730.
    46. 46)
      • 4. Wakimoto, T., Akazawa, Y.: ‘Circuits to reduce distortion in the diode-bridge track-and-hold’, IEEE J. Solid-State Circuits, 1993, 28, pp. 384387.
    47. 47)
      • 24. Hwang, Y.-S., Chen, J.-J., Wu, S.-Y., et al: ‘A new pipelined analog-to-digital converter using current conveyors’, Analog Integr. Circuits Signal Process., 2007, 50, pp. 213220.
    48. 48)
      • 38. Monpapassorn, A.: ‘An analog switch using a current conveyor’, Int. J. Electron., 2002, 89, pp. 651656.
    49. 49)
      • 32. Hatzopoulos, A.A., Siskos, S., Laopoulos, T.: ‘Current conveyor based test structures for mixed-signal circuits’, IEE Proc., Circuits Devices Syst., 1997, 144, pp. 213217.
    50. 50)
      • 21. Lee, T.-S., Lu, C.-C.: ‘A 200 MHz 4.8 mW 3 V fully differential CMOS sample-and-hold circuit with low hold pedestal’, Analog Integr. Circuits Signal Process., 2005, 45, pp. 3746.
    51. 51)
      • 29. Lin, J.-Y., Hsieh, C.-C.: ‘A 0.3 V 10-bit 1.17 f SAR ADC with merge and split switching in 90 nm CMOS’, IEEE Trans. Circuits Syst. I Regul. Pap., 2015, 62, pp. 7079.
    52. 52)
      • 41. Angkeaw, K., Prommee, P.: ‘Two digitally programmable gain amplifiers based on current conveyors’, Analog Integr. Circuits Signal Process., 2011, 67, pp. 253260.
    53. 53)
      • 25. Hwang, Y.-S., Wang, S.-F., Sheu, P.-W., et al: ‘Novel FBCCII-based sample-and-hold and MDAC circuits’, Int. J. Electron., 2008, 95, pp. 11111117.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0411
Loading

Related content

content/journals/10.1049/iet-cds.2017.0411
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address