Your browser does not support JavaScript!

Fault-tolerant delay cell for ring oscillator application in 65 nm CMOS technology

Fault-tolerant delay cell for ring oscillator application in 65 nm CMOS technology

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A novel fault tolerant delay cell for ring oscillator (RO) is proposed. As RO is one of the crucial blocks in phased locked loop, delayed locked loo and clock data recovery, it should be tolerated against single event transient (SET) and stuck at faults for harsh environment. Their proposed hybrid fault tolerant topology is combination of triple and quad transistors redundancy, which is applied to the delay cell structure based on the sensitivity role of each transistor. The simulation results with Cadence software show that the proposed fault-tolerant delay cell dissipates 34.34 µW power, while it occupies 127.2 µm2 chip area. The proposed topology not only has lower power dissipation in comparison with existing fault tolerant delay cells but also is more reliable against stuck at single and multiple faults and also SETs. By using the proposed reliable delay cell in the RO, the achieved power dissipation and phase noise are about 249 µW and −96 dBc/Hz, respectively, while higher reliability is achieved in comparison with non-redundant RO s.

Related content

This is a required field
Please enter a valid email address