Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Low-power successive approximation ADC using split-monotonic capacitive DAC

A power-efficient successive approximation analogue-to-digital converter (SA-ADC) is proposed. In order to reduce the energy consumption of the employed capacitive digital-to-analogue converter (DAC), a new low-energy capacitor switching technique is proposed which consumes no switching energy during the first three comparison steps. Moreover, an energy-efficient split-monotonic technique is utilised for the rest of the operations. Compared with the capacitor switching technique used in the conventional SA-ADC, the proposed scheme not only reduces the switching energy by 99.23% but also it has lowered the total capacitor size by 75%. Furthermore, in order to realise the proposed capacitor switching scheme, a power-efficient logic circuit is designed which reduces the power consumption of the required control logic circuit by reducing the activity of the employed D-type flip-flops. Based on the proposed scheme, a 10 bit 40 kS/s SA-ADC has been designed and simulated in a 0.18 µm complementary metal-oxide semiconductor technology with a supply voltage of 1 V. Post-layout simulation results show that the proposed ADC circuit achieves a signal-to-noise-and-distortion ratio of 60.8 dB at the cost of 270 nW power consumption, resulting in a figure-of-merit of 7.6 fJ/conversion step.

References

    1. 1)
      • 5. Zhang, D., Bhide, A.: ‘A 53-nW 9.1-ENOB 1-kS/s SAR ADC in 0.13-μm CMOS for medical implant devices’, IEEE J. Solid-State Circuits, 2012, 47, (7), pp. 15851593.
    2. 2)
      • 3. Zhu, Z., Liang, Y.: ‘A 0.6-V 38-nW 9.4-ENOB 20-kS/s SAR ADC in 0.18-µm CMOS for medical implant devices’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (9), pp. 21672176.
    3. 3)
      • 2. Tao, Y., Lian, V.: ‘A 0.8-V, 1-MS/s, 10-bit SAR ADC for multi-channel neural recording’, IEEE Trans. Circuits Syst. I, 2015, 62, (2), pp. 366375.
    4. 4)
      • 13. Chiang, S.W.: ‘Charge-dumping switching scheme for successive-approximation-register analogue-to-digital converters’, Electron. Lett., 2016, 52, (5), pp. 348350.
    5. 5)
      • 6. Liu, C.C., Chang, S.J., Huang, G.Y., et al: ‘A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure’, IEEE J. Solid-State Circuits, 2010, 45, (4), pp. 731740.
    6. 6)
      • 16. Sanyal, A., Sun, N.: ‘SAR ADC architecture with 98% reduction in switching energy over conventional scheme’, Electron. Lett., 2013, 49, (4), pp. 2482505.
    7. 7)
      • 15. Saberi, M., Lotfi, R.: ‘Segmented architecture for successive approximation analog-to-digital converters’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2014, 22, (3), pp. 593606.
    8. 8)
      • 1. Zhang, D., Alvandpour, A.: ‘A 12.5-ENOB 10-kS/s redundant SAR ADC in 65 nm CMOS’, IEEE Trans. Circuits Syst. II Express Briefs, 2016, 63, (3), pp. 244248.
    9. 9)
      • 18. Zhu, Y., Chan, C.H., Chio, U.F., et al: ‘A 10-bit 100-MS/s reference-free SAR ADC in 90 nm CMOS’, IEEE J. Solid-State Circuits, 2010, 45, (6), pp. 11111121.
    10. 10)
      • 7. Yuan, C., Lam, Y.: ‘Low-energy and area-efficient tri-level switching scheme for SAR ADC’, Electron. Lett., 2012, 48, pp. 482483.
    11. 11)
      • 12. Srinivasan, S.R., Balsara, P.T.: ‘Energy-efficient sub-DAC merging scheme for variable resolution SAR ADC’, Electron. Lett., 2014, 50, (20), pp. 14211423.
    12. 12)
      • 10. Xie, L., Wen, G., Liu, J., et al: ‘Energy-efficient hybrid capacitor switching scheme for SAR ADC’, Electron. Lett., 2014, 50, (1), pp. 2223.
    13. 13)
      • 8. Zhu, Zh., Yu, X., Song, X.: ‘Vcm-based monotonic capacitor switching scheme for SAR ADC’, Electron. Lett., 2013, 49, pp. 482483.
    14. 14)
      • 20. Sun, L., Li, B., Wong, A., et al: ‘A charge recycling SAR ADC with a LSB-down switching scheme’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (2), pp. 21672176.
    15. 15)
      • 21. Lin, K., Cheng, Y., Tang, K.: ‘A 0.5 V 1.28-MS/s 4.68-fJ/conversion-step SAR ADC with energy-efficient DAC and trilevel switching scheme’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2016, 24, (4), pp. 14411449.
    16. 16)
      • 4. Lee, H., Park, S.: ‘A 100-nW 9.1-ENOB 20-kS/s SAR ADC for portable pulse oximeter’, IEEE Trans. Circuits Syst. II, 2015, 62, (4), pp. 357361.
    17. 17)
      • 19. Zhu, Z., Qiu, Z.: ‘A 6-to-10-bit 0.5-to-0.9 V reconfigurable 2 MS/s power scalable SAR ADC in 0.18 μm CMOS’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2015, 62, (3), pp. 689696.
    18. 18)
      • 11. Ni, Y., Liu, L., Xu, S.: ‘Mixed capacitor switching scheme for SAR ADC with highest switching energy efficiency’, Electron. Lett., 2015, 51, (6), pp. 466467.
    19. 19)
      • 9. Liu, Sh., Shen, Y., Zhu, Zh.: ‘A 12-Bit 10 MS/s SAR ADC with high linearity and energy-efficient switching’, IEEE Trans. Circuits Syst. I Regul. Pap., 2016, 62, (9), pp. 21672176.
    20. 20)
      • 14. Ginsburg, B.P., Chandrakasan, A.P.: ‘500-MS/s 5-bit ADC in 65-nm CMOS with split capacitor array ADC’, IEEE J. Solid-State Circuits, 2007, 42, (4), pp. 739746.
    21. 21)
      • 17. Zhang, Y., Bonizzoni, E., Maloberti, F.: ‘An energy-efficient switching method for SAR ADCs with bottom plate sampling’, Electron. Lett., 2016, 52, (9), pp. 690692.
    22. 22)
      • 22. Kuo, B., Chen, B., Tsai, C.: ‘A 0.6 V, 1.3 GHz dynamic comparator with cross-coupled latches’. Proc. IEEE Int. Symp. VLSI Design, Automation and Test (VLSI-DAT), 2015, pp. 14.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0373
Loading

Related content

content/journals/10.1049/iet-cds.2017.0373
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address