access icon free Design techniques of all-digital arithmetic units for time-mode signal processing

This study provides a comprehensive treatment of the design techniques of all-digital arithmetic units for time-mode signal processing. The arithmetic units investigated include time polarity detectors, time absolute-value generators, time adders, time baluns, time amplifiers, time quantisers, time registers, and time integrators. The principle, circuit implementation, constraints and limitations of these units are investigated in detail. An emphasis is given to time adders and time integrators. An in-depth study of time adders constructed from switched delay units, dual discharge paths, and unidirectional gated delay lines is provided. It is followed with the presentation of three time registered evolved from these time adders. Three time integrators developed from the preceding time adders and time registers are studied and their characteristics are compared. Finally, the design of a first-order time-to-digital converter utilising these arithmetic units is presented.

Inspec keywords: time-digital conversion; delay lines; digital arithmetic; switching circuits; adders; digital signal processing chips

Other keywords: absolute-value generator; time amplifier; switched delay unit; dual discharge path; all-digital arithmetic unit; time-mode signal processing; time registers; time polarity detector; time balun; time integrator; time quantiser; unidirectional gated delay line; time adder; first-order ΔΣ time-to-digital converter

Subjects: Logic circuits; Pulse circuits; Logic and switching circuits; A/D and D/A convertors; Digital signal processing chips; Digital signal processing chips; A/D and D/A convertors

References

    1. 1)
      • 25. Baird, R., Fiez, T.: ‘Linearity enhancement of multibit Δ_ A/D and D/A converters using data weighted averaging’, IEEE Trans. Circuits Syst. II, 1995, 42, (12), pp. 753762.
    2. 2)
      • 9. Hong, J., Kim, S., Liu, J., et al: ‘A 0.004 mm2 250 μW▵Ʃ TDC with time-difference accumulator and a 0.012 mm2 2.5 mW bang-bang digital PLL using PRNG for low-power SoC applications’. IEEE Int. Conf. Solid-State Circuits Digest Technical Papers, San Francisco, USA, 2012, pp. 240242.
    3. 3)
      • 13. Lee, M., Abidi, A.: ‘A 9B, 1.25 ps resolution coarse-fine time-to-digital converter in 90 nm CMOS that amplifies a time residue’, IEEE J. Solid-State Circuits, 2008, 43, (4), pp. 769777.
    4. 4)
      • 15. Taillefer, C., Roberts, G.: ‘Delta-sigma A/D converter via time-mode signal processing’, IEEE Trans. Circuits Syst. I, 2009, 56, (9), pp. 19081920.
    5. 5)
      • 2. Straayer, M., Perrott, M.: ‘A 12-bit, 10-MHz bandwidth, continuous-time ▵Ʃ ADC with a 5-bit, 950-MS/s VCO-based quantizer’, IEEE J. Solid-State Circuits, 2008, 43, (4), pp. 805814.
    6. 6)
      • 27. Nys, O., Henderson, R.: ‘A 19-bit low-power multibit sigma-delta ADC based on data weighted averaging’, IEEE J. Solid-State Circuits, 1997, 32, (7), pp. 933942.
    7. 7)
      • 24. Yuan, F.Ed.: ‘CMOS time-mode circuits and systems: fundamentals and applications’ (CRC Press, New York, 2015).
    8. 8)
      • 21. Park, Y., Yuan, F.: ‘All-digital delta-sigma TDC with differential bi-directional gated-delay-line time integrator’. IEEE Mid-West Symp. Circuits and Systems, Boston, USA, 2017, pp. 15131516.
    9. 9)
      • 20. Ali-Bakhshian, M., Roberts, G.: ‘A digital implementation of a dual-path time-to-time integrator’, IEEE Trans. Circuits Syst. I, 2012, 59, (11), pp. 25782591.
    10. 10)
      • 1. Li, G., Tousi, Y., Hassibi, A., et al: ‘Delay-line-based analog-to-digital converters’, IEEE Trans. Circuits Syst. II, 2009, 56, (6), pp. 464468.
    11. 11)
      • 22. Chung, S., Hwang, K., Lee, W., et al: ‘A high resolution metastability-independent two-step gated ring oscillator TDC with enhanced noise shaping’. Proc. IEEE Int. Symp. Circuits System, Paris, France, 2010, pp. 13001303.
    12. 12)
      • 14. Kim, K., Kim, Y., Yu, W., et al: ‘A 7b 3.75 ps resolution two-step time-to-digital converter in 65 nm CMOS using pulse-train time amplifier’, IEEE J. Solid-State Circuits, 2013, 48, (4), pp. 10091017.
    13. 13)
      • 4. Jang, T., Kim, J., Yoon, Y., et al: ‘A highly-digital VCO-based analog-to-digital converter using phase interpolator and digital calibration’, IEEE Trans. VLSI Syst., 2012, 20, (8), pp. 13681372.
    14. 14)
      • 12. Kwon, H., Lee, J., Sim, J., et al: ‘A high-gain wide-input-range time amplifier with an open-loop architecture and a gain equal to current bias ratio’. Proc. IEEE Asian Solid-State Circuits Conf., Jeju, South Korea, 2011, pp. 325328.
    15. 15)
      • 10. Park, Y., Yuan, F.: ‘Low-power all-digital delta-sigma TDC with bi-directional gated delay line time integrator’. IEEE Mid-West Symp. Circuits and Systems, Boston, MA, USA, 2017, pp. 679682.
    16. 16)
      • 26. Nys, O., Henderson, R.: ‘An analysis of dynamic element matching techniques in sigma-delta modulation’. IEEE Int. Symp. Circuits Syst., Atlanta, USA, 1996, pp. 213234.
    17. 17)
      • 23. Rashidzadeh, R., Ahmadi, M., Miller, W.: ‘An all-digital self-calibration method for a vernier-based time-to-digital converter’, IEEE Trans. Instrum. Meas., 2010, 59, (2), pp. 463469.
    18. 18)
      • 7. Kim, J., Kim, Y., Kim, K., et al: ‘A hybrid-domain two-step time-to- digital converter using a switch-based time-to-voltage converter and SAR ADC’, IEEE Trans. Circuits Syst. II, 2017, 62, pp. 631635.
    19. 19)
      • 3. Park, M., Perrott, M.: ‘A single-slope 80 Ms/s ADC using two-step time-to-digital conversion’. IEEE Int. Symp. Circuits System, 2009, pp. 11251128.
    20. 20)
      • 8. Tokairin, T., Okada, M., Kitsunezuka, M., et al: ‘A 2.1-to-2.8-GHz low-phase-noise all-digital frequency synthesizer with a time-windowed time-to-digital converter’, IEEE J. Solid-State Circuits, 2010, 45, (12), pp. 25822590.
    21. 21)
      • 17. Kim, K., Yu, W., Cho, S.: ‘A 9 bit, 1.12 ps resolution 2.5 b/stage pipelined time-to-digital converter in 65 nm CMOS using time-register’, IEEE J. Solid-State Circuits, 2014, 49, (4), pp. 10071016.
    22. 22)
      • 11. Dehlaghi, B., Magierowski, S., Belostotski, L.: ‘Highly-linear time-difference amplifier with low sensitivity to process variations’, IET Electron. Lett., 2011, 47, (13), pp. 743745.
    23. 23)
      • 16. Ali-Bakhshian, M., Roberts, G.: ‘Digital storage, addition and subtraction of time-mode variables’, IET Electron. Lett., 2011, 47, (16), pp. 910911.
    24. 24)
      • 5. Yu, W., Kim, J., Kim, K., et al: ‘A time-domain high-order MASH ▵Ʃ ADC using voltage-controlled gated-ring oscillator’, IEEE Trans. Circuits Syst. I., 2013, 60, (4), pp. 856866.
    25. 25)
      • 19. Pekau, H., Yousif, A., Haslett, J.: ‘A CMOS integrated linear voltage-to-pulse-delay-time converter for time-based analog-to-digital converters’. Proc. IEEE Int. Symp. Circuits System, Island of Kos, Greece, 2006, pp. 23732376.
    26. 26)
      • 6. Yu, W., Kim, K., Cho, S.: ‘A 148 fsrms integrated noise 4 MHz bandwidth second-order ▵Ʃ time-to-digital converter with gated switched-ring oscillator’, IEEE Trans. Circuits Syst. I, 2014, 61, (8), pp. 22812289.
    27. 27)
      • 18. Park, Y., Amor, D., Yuan, F.: ‘Time integrator for mixed-mode signal processing’. Proc. IEEE Int. Symp. Circuits System, Montreal, Canada, 2016, pp. 826829.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0327
Loading

Related content

content/journals/10.1049/iet-cds.2017.0327
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading