Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Calibration method to reduce the error in logarithmic conversion with its circuit implementation

Here, based on Mitchell's logarithmic conversion, the authors propose a fast calibration method using a fixed binary code with case judgement, which suppresses the conversion error. The authors developed a highly paralleled circuit serving the proposed calibration method. Differential cascade voltage switch logic (DCVSL) is used to work in both high-speed logic and adiabatic logic and trade-off between power dissipation and operation speed. In addition, a low-cost adiabatic clock generator without any passive component is presented to support a four-phase sine clock for the adiabatic logic operation. An 8-bit logarithmic converter is designed in TSMC 180 nm CMOS. Post-simulation results show that the proposed calibration can reduce the conversion error to 1.55% based on Mitchell's algorithm, the power dissipation varies between 1.12 and 3.709 mW, and the delay is 1.82 ns under operational DCVLS.

References

    1. 1)
      • 25. Rabaey, J., Chandrakasan, A., Nikolić, B.: ‘Digital integrated circuits’ (Upper Saddle River, New Jersey, 2003).
    2. 2)
      • 18. Maksimovic, D., Oklobdzija, V.G., Nikolic, B., et al: ‘Clocked CMOS adiabatic logic with integrated single-phase power-clock supply’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2000, 8, (4), pp. 460463.
    3. 3)
      • 10. Huang, S.C., Chen, L.G., Chen, T.H.: ‘The chip design of a 32-b logarithmic number system’. Proc. of 1994 IEEE Int. Symp. on Circuits and Systems (ISCAS), London, UK, May 1994, pp. 167170.
    4. 4)
      • 22. ‘Properties of logarithmic functions’. Available at http://www.montereyinstitute.org/courses/DevelopmentalMath/TEXTGROUP-1-19_RESOURCE/U18_L2_T2_text_final.html, accessed May 2017.
    5. 5)
      • 8. Kostopoulos, D.K.: ‘An algorithm for the computation of binary logarithms’, IEEE Trans. Comput., 1991, 40, (11), pp. 12671270.
    6. 6)
      • 30. Zhao, Z., Srivastava, A., Peng, L., et al: ‘A low-cost mixed clock generator for high speed adiabatic logic’. Proc. of 2016 IEEE Computer Society Annual Symp. on VLSI (ISVLSI), Pittsburgh, USA, July 2016, pp. 587590.
    7. 7)
      • 14. Lo, H.Y.: ‘Generation of a precise binary logarithm with difference grouping programmable logic array’, IEEE Trans. Comput., 1985, 100, (8), pp. 681691.
    8. 8)
      • 13. Lai, F.S.: ‘The architecture and analysis of a hybrid number system processor’. Proc. of 1992 IEEE Int. Symp. on Circuits and Systems (ISCAS), San Diego, USA, May 1992, pp. 803806.
    9. 9)
      • 29. Nakata, S., Makino, H., Matsuda, Y.: ‘A new stepwise adiabatic charging circuit with a smaller capacitance in a regenerator than a load capacitance’. Proc. of 2014 IEEE Int. Midwest Symp. on Circuits and Systems, College Station, USA, August 2014, pp. 439442.
    10. 10)
      • 28. Stoffi, A.B., Amirante, E., Fischer, J., et al: ‘Resonant 90 degree shifter generator for 4-phase trapezoidal adiabatic logic’, Adv. Radio Sci., 2003, 1, (9), pp. 243246.
    11. 11)
      • 26. Kim, J.M., Yoo, H.J.: ‘Bitwise competition logic for compact digital comparator’. Proc. of 2007 IEEE Asian Solid-State Circuits Conf., Jeju, Korea, November 2007, pp. 5962.
    12. 12)
      • 24. Sathe, V.S., Chueh, J.Y., Papaefthymiou, M.C.: ‘Energy-efficient GHz-class charge-recovery logic’, IEEE J. Solid-State Circuits, 2007, 42, (1), pp. 3847.
    13. 13)
      • 23. Lee, H.J., Kim, Y.B.: ‘Low power null convention logic circuit design based on DCVSL’. Proc. of 2013 IEEE Int. Midwest Symp. on Circuits and Systems, Columbus, USA, August 2013, pp. 2932.
    14. 14)
      • 4. Mahalingam, V., Nagarajan, R.: ‘Improving accuracy in Mitchell's logarithmic multiplication using operand decomposition’, IEEE Trans. Comput., 2006, 55, (12), pp. 15231535.
    15. 15)
      • 33. Caro, D.D., Genovese, M., Napoli, E., et al: ‘Accurate fixed-point logarithmic converter’, IEEE Trans. Circuits Syst. II, Express Briefs, 2014, 61, (7), pp. 526530.
    16. 16)
      • 12. Wan, Y., Wey, C.L.: ‘Efficient algorithms for binary logarithmic conversion and addition’, IEE Proc., Comput. Digit. Tech., 1999, 146, (3), pp. 168172.
    17. 17)
      • 16. Gok, M., Schulte, M.J., Arnold, M.G.: ‘Integer multipliers with overflow detection’, IEEE Trans. Comput., 2006, 55, (8), pp. 10621066.
    18. 18)
      • 5. Combet, M., Zonneveld, H.V., Verbeek, L.: ‘Computation of the base two logarithm of binary numbers’, IEEE Trans. Electron. Comput., 1965, 14, (6), pp. 863867.
    19. 19)
      • 3. Mitchell, J.N.: ‘Computer multiplication and division using binary logarithms’, IRE Trans. Electron. Comput., 1962, 11, (4), pp. 512517.
    20. 20)
      • 32. Abed, K.H., Siferd, R.E.: ‘CMOS VLSI implementation of a low-power logarithmic converter’, IEEE Trans. Comput., 2003, 52, (11), pp. 14211433.
    21. 21)
      • 6. Juang, T.B., Chen, S.H., Cheng, H.J.: ‘A lower error and rom-free logarithmic converter for digital signal processing applications’, IEEE Trans. Circuits Syst. II, Express Briefs, 2009, 56, (12), pp. 931935.
    22. 22)
      • 9. SanGregory, S.L., Brothers, C., Gallagher, D., et al: ‘A fast, low-power logarithm approximation with CMOS VLSI implementation’. Proc. of 1999 IEEE Midwest Symp. on Circuits and Systems, Las Cruces, USA, August 1999, pp. 388391.
    23. 23)
      • 31. Jovanovic, G., Stojcev, M., Stamenkovic, Z.: ‘A CMOS voltage controlled ring oscillator with improved frequency stability’, Sci. Publ. State Univ. Novi Pazar, Ser. A: Appl. Math. Inf. Mech., 2010, 2, (1), pp. 19.
    24. 24)
      • 21. Gutierrez, R., Valls, J.: ‘Low cost hardware implementation of logarithm approximation’, IEEE Trans. Very Large Scale Integr. (VLSI) Syst., 2011, 19, (12), pp. 23262330.
    25. 25)
      • 7. Juang, T.B., Meher, P.K., Jan, K.S.: ‘High-performance logarithmic converters using novel two-region bit-level manipulation schemes’. Proc. of 2011 IEEE Int. Symp. on VLSI Design, Automation and Test, Hsinchu, Taiwan, April 2011, pp. 14.
    26. 26)
      • 20. Kim, C., Yoo, S.M., Kang, S.M.: ‘Low-power adiabatic computing with NMOS energy recovery logic’, Electron. Lett., 2000, 36, (16), pp. 13491350.
    27. 27)
      • 1. Chen, Y.J., Hsu, C.H., Hung, C.Y., et al: ‘A 130.3 mW 16-core mobile GPU with power-aware pixel approximation techniques’, IEEE J. Solid-State Circuits, 2015, 50, (9), pp. 22122223.
    28. 28)
      • 11. Fit-Florea, A., Li, L., Thornton, M.A., et al: ‘A discrete logarithm number system for integer arithmetic modulo 2k: algorithms and lookup structures’, IEEE Trans. Comput., 1994, 141, (5), pp. 281292.
    29. 29)
      • 19. Tenace, V., Calimera, A., Macii, E., et al: ‘Quasi-adiabatic logic arrays for silicon and beyond-silicon energy-efficient ICs’, IEEE Trans. Circuits Syst. II, Express Briefs, 2016, 63, (12), pp. 11111115.
    30. 30)
      • 17. Abed, K.H., Siferd, R.E.: ‘CMOS VLSI implementation of 16-bit logarithm and anti-logarithm converters’. Proc. of 2000 IEEE Midwest Symp. on Circuits and Systems, Lansing, USA, August 2000, pp. 776779.
    31. 31)
      • 2. Chrétien, B., Escande, A., Kheddar, A.: ‘GPU robot motion planning using semi-infinite nonlinear programming’, IEEE Trans. Parallel Distrib. Syst., 2016, 27, (10), pp. 29262939.
    32. 32)
      • 27. Teichmann, P.: ‘Adiabatic logic: future trend and system level perspective’ (Springer Science & Business Media, Berlin, Germany, 2011).
    33. 33)
      • 15. Abed, K.H., Siferd, R.E.: ‘VLSI implementations of low-power leading-one detector circuits’. Proc. of the IEEE SoutheastCon 2006, Memphis, USA, March 2006, pp. 279284.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0315
Loading

Related content

content/journals/10.1049/iet-cds.2017.0315
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address