access icon free Theory on negative time-delay looped system

An innovative theory on the looped system generating negative time delay is presented. Both the direct and delayed feedback loop topologies of this system essentially consist of an independent-frequency gain and time-delay block. It is shown theoretically that for suitable parameters the system can generate a negative time delay by virtue of a negative group delay (NGD). Analytical expressions reveal that the system presents an unconditional low-pass NGD behaviour. The NGD properties as a function of the system parameters are derived. To demonstrate the feasibility of the developed NGD system concept, frequency- and time-domain analyses are performed with Matlab, resulting in a very good agreement between the simulations and theory. Furthermore, as illustrated by computational results, negative time-delay signal propagation (signal advance) is obtained. The proposed NGD system can potentially be useful for time-delay compensation in engineering systems.

Inspec keywords: circuit feedback; delay circuits

Other keywords: frequency-domain analysis; low-pass NGD behaviour; negative group delay; time-domain analysis; innovative theory; negative time-delay signal propagation; time-delay block; negative time-delay looped system; NGD system concept; time-delay compensation; delayed feedback loop topology; independent-frequency gain; direct feedback loop topology

Subjects: Pulse circuits

References

    1. 1)
      • 2. Zhang, C.-K., He, Y., Jiang, L., et al: ‘Delay-variation-dependent stability of delayed discrete-time systems’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 26632669.
    2. 2)
      • 17. Ravelo, B.: ‘Neutralization of LC- and RC-effects with left-handed and NGD circuits’, Adv. Electromagn., 2013, 2, (1), pp. 7384.
    3. 3)
      • 32. Broomfield, C.D., Everard, J.K.A.: ‘Broadband negative group delay networks for compensation of oscillators, filters and communication systems’, Electron. Lett., 2000, 36, (23), pp. 19311933.
    4. 4)
      • 28. Voss, H.U.: ‘Signal prediction by anticipatory relaxation dynamics’, Phys. Rev. E, 2016, 93, (030201), pp. 15.
    5. 5)
      • 9. Wu, M., He, Y., She, J.-H., et al: ‘Delay-dependent criteria for robust stability of time-varying delay systems’, Automatica, 2004, 40, (8), pp. 14351439.
    6. 6)
      • 33. Ravelo, B.: ‘Innovative theory on multiband negative group delay topology based on feedback loop power combiner’, IEEE Trans. Circuits Syst. II Express Briefs, 2016, 63, (8), pp. 738742.
    7. 7)
      • 23. Otter, W.J., Hanham, S.M., Klein, N., et al: ‘Millimeter-wave negative group delay network’. Union Radio-Scientifique Int. Asia-Pacific Radio Science Conf. (URSI AP-RASC 2016), Seoul, Korea, August 2016, pp. 12051207.
    8. 8)
      • 24. Choi, H., Jeong, Y., Kim, C.D., et al: ‘Bandwidth enhancement of an analog feedback amplifier by employing a negative group delay circuit’, Prog. Electromagn. Res., 2010, 105, pp. 253272.
    9. 9)
      • 25. Bukhman, N.S., Bukhman, S.V.: ‘On the negative delay time of a narrow-band signal as it passes through the resonant filter of absorption’, Radiophys. Quantum Electron., 2004, 47, (1), pp. 6676.
    10. 10)
      • 7. Fridman, E., Shaked, U.: ‘An improved stabilization method for linear systems with time-delay’, IEEE Trans. Autom. Control, 2002, 47, pp. 19311937.
    11. 11)
      • 15. Eudes, T., Ravelo, B.: ‘Cancellation of delays in the high-rate interconnects with UWB NGD active cells’, Appl. Phys. Res., 2011, 3, (2), pp. 8188.
    12. 12)
      • 34. Ravelo, B.: ‘Methodology of elementary negative group delay active topologies identification’, IET Circuits Dev. Syst., 2013, 7, (3), pp. 105113.
    13. 13)
      • 4. Pasillas-Lépine, W., Loría, A., Hoang, T.-B.: ‘A new prediction scheme for input delay compensation in restricted-feedback linearizable systems’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 36933699.
    14. 14)
      • 1. Li, Q.-K., Lin, H.: ‘Effects of mixed-modes on the stability analysis of switched time-varying delay systems’, IEEE Trans. Autom. Control, 2016, 61, (10), pp. 30383044.
    15. 15)
      • 3. Shen, J., Lam, J.: ‘Stability and performance analysis for positive fractional-order systems with time-varying delays’, IEEE Trans. Autom. Control, 2016, 61, (9), pp. 26762681.
    16. 16)
      • 19. Mitchell, M.W., Chiao, R.Y.: ‘Causality and negative group delays in a simple bandpass amplifier’, Am. J. Phys., 1998, 66, pp. 1419.
    17. 17)
      • 16. Ravelo, B.: ‘Recovery of microwave-digital signal integrity with NGD circuits’, Photonics Optoelectron., 2013, 2, (1), pp. 816.
    18. 18)
      • 36. Chan, P.K., Schlag, M.D.F.: ‘Bounds on signal delay in RC mesh networks’, IEEE Trans. Comput.-Aided Des. Integr. Circuits Syst., 1989, 8, (6), pp. 581589.
    19. 19)
      • 11. Heyde, E.C.: ‘Theoretical methodology for describing active and passive recirculating delay line systems’, Electron. Lett., 1995, 31, (23), pp. 20382039.
    20. 20)
      • 18. Mitchell, M.W., Chiao, R.Y.: ‘Negative group delay and ‘Fronts’ in a causal systems: an experiment with very low frequency bandpass amplifiers’, Phys. Lett. A, 1997, 230, pp. 133138.
    21. 21)
      • 13. Wijenayake, C., Xu, Y., Madanayake, A., et al: ‘RF analog beamforming fan filters using CMOS all-pass time delay approximations’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2012, 59, (5), pp. 10611073.
    22. 22)
      • 14. Solli, D., Chiao, R.Y., Hickmannn, J.M.: ‘Superluminal effects and negative group delays in electronics, and their applications’, Phys. Rev. E, 2002, 66, (056601), pp. 14.
    23. 23)
      • 20. Nakanishi, T., Sugiyama, K., Kitano, M.: ‘Demonstration of negative group delays in a simple electronic circuit’, Am. J. Phys., 2002, 70, (11), pp. 11171121.
    24. 24)
      • 6. Shujaee, K., Lehman, B.: ‘Vibrational feedback control of time delay systems’, IEEE Trans. Autom. Control, 1997, 42, (11), pp. 15291545.
    25. 25)
      • 8. Liu, L., Zhang, G., Li, W., et al: ‘Delay-dependent H-infinity control of linear descriptor systems’. Proc. 7th World Congress on Intelligent Control and Automation (WCICA), Chongqing, China, 25–27 June 2008, pp. 13901395.
    26. 26)
      • 26. Munday, J.N., Henderson, R.H.: ‘Superluminal time advance of a complex audio signal’, Appl. Phys. Lett., 2004, 85, pp. 503504.
    27. 27)
      • 21. Kitano, M., Nakanishi, T., Sugiyama, K.: ‘Negative group delay and superluminal propagation: an electronic circuit approach’, IEEE J. Sel. Top. Quantum Electron., 2003, 9, (1), pp. 4351.
    28. 28)
      • 10. Gu, K.: ‘An integral inequality in the stability problem of time-delay systems’. Proc. 39th IEEE Conf. Decision and Control, Sydney, NSW, 12–15 December 2000, vol. 3, pp. 28052810.
    29. 29)
      • 12. Groenewold, G.: ‘Noise and group delay in active filters’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2007, 54, (7), pp. 14711480.
    30. 30)
      • 5. Xiang, W.: ‘Necessary and sufficient condition for stability of switched uncertain linear systems under dwell-time constraint’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 36193624.
    31. 31)
      • 31. Lucyszyn, S., Robertson, I.D., Aghvami, A.H.: ‘Negative group delay synthesiser’, Electron. Lett., 1993, 29, (9), pp. 798800.
    32. 32)
      • 29. Kandic, M., Bridges, G.E.: ‘Asymptotic limits of negative group delay in active resonator-based distributed circuits’, IEEE Trans. Circuits Syst. I, Regul. Pap., 2011, 58, (8), pp. 17271735.
    33. 33)
      • 22. Lucyszyn, S., Robertson, I.D.: ‘Analog reflection topology building blocks for adaptive microwave signal processing applications’, IEEE Trans. Microw. Theory Tech., 1995, MTT-43, (3), pp. 601611.
    34. 34)
      • 37. Du, H., Li, S.: ‘Attitude synchronization for flexible spacecraft with communication delays’, IEEE Trans. Autom. Control, 2016, 61, (11), pp. 36253630.
    35. 35)
      • 30. Kandic, M., Bridges, G.E.: ‘Limitations of negative group delay phenomenon in linear causal media’, Prog. Electromagn. Res., 2013, 134, pp. 227246.
    36. 36)
      • 35. Ravelo, B.: ‘Similitude between the NGD function and filter gain behaviours’, Int. J. Circ. Theory Appl., 2014, 42, (10), pp. 10161032.
    37. 37)
      • 27. Munday, J.N., Robertson, W.M.: ‘Observation of negative group delays within a coaxial photonic crystal using an impulse response method’, Opt. Commun., 2007, 273, (1), pp. 3236.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0306
Loading

Related content

content/journals/10.1049/iet-cds.2017.0306
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading