Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hardware implementation and VLSI design of spectrum sensor for next-generation LTE-A cognitive-radio wireless network

This paper presents reconfigurable and hardware-efficient VLSI architecture of time domain cyclostationary-feature detector (TCD) for spectrum sensing in the cognitive-radio wireless network. It incorporates new architecture for autocorrelator that supports the entire range of subcarriers used by orthogonal frequency division multiplexing signals compliant to 4G LTE-Advanced wireless network. A novel scheme of overflow/underflow protection is proposed for the coordinate rotation digital computer engine of TCD. Additionally, hardware-efficient techniques have been introduced for the multiply-&-accumulate and accumulator architectures of suggested TCD design. Real-world signals are captured using universal software radio peripheral devices and are fed to its FPGA prototype. An application specific integrated circuit synthesis and post-layout simulation of the proposed detector have been performed using 65 nm-CMOS technology and it occupies 0.32 mm2 of core area and consumes total power of 18.5 mW at 100 MHz clock frequency. In comparison with the state-of-the-art works, the proposed detector requires 34 and 93% lesser hardware resource and memory, respectively

Inspec keywords: cognitive radio; next generation networks; Long Term Evolution; AWGN channels; 4G mobile communication; integrated circuit layout; OFDM modulation; CMOS integrated circuits; application specific integrated circuits; software radio; VLSI; radio spectrum management; wireless sensor networks; signal detection; field programmable gate arrays

Other keywords: real-world signals; accumulator architectures; size 65.0 nm; frequency 1.0 MHz; universal software radio peripheral devices; spectrum sensor; FPGA; rotation digital computer engine; frequency 100.0 MHz; signal-to-noise ratios; multiply-&-accumulate architecture; OFDM signals; field programmable gate array; orthogonal frequency division multiplexing; united-microelectronics-corporation complementary metal–oxide–semiconductor technology; spectrum sensing; application specific integrated circuit synthesis; TCD design; time 5.12 ms; hardware-efficient very large-scale integration architecture; clock frequency; power 18.5 mW; VLSI design; additive white Gaussian noise channel environment; post-layout simulation; hardware-efficient techniques; OFDM-based communication system; autocorrelator; 4G LTE-Advanced; next-generation LTE-A cognitive-radio wireless network; overflow-underflow protection; performance analysis; time-domain cyclostationary-feature detector

Subjects: Modulation and coding methods; Signal detection; CMOS integrated circuits; Mobile radio systems; Semiconductor integrated circuit design, layout, modelling and testing; Logic circuits; Wireless sensor networks

References

    1. 1)
      • 24. 3GPP, 3GPP TS 36.211, technical specification, V13.2.0, 3GPP Std., 06, 16.
    2. 2)
      • 26. Walther, J.S.: ‘A unified algorithm for elementary functions’. Proc. Spring Joint Computer Conf., 1971, pp. 379385.
    3. 3)
      • 1. Haykin, S.: ‘Cognitive radio: brain-empowered wireless communications’, IEEE J. Sel. Areas Commun., 2005, 23, (2), pp. 201220.
    4. 4)
      • 23. Neyman, J., Pearson, E.S.: ‘On the problem of the most efficient tests of statistical hypotheses’, Philos. Trans. R. Soc. A: Math., Phys. Eng. Sci., 1933, 231, (694–706), p. 289?337.
    5. 5)
      • 5. Vijay, G., Bdira, E.B.A., Ibnkahla, M., et al: ‘Cognition in wireless sensor networks: a perspective’, IEEE Sens. J., 2011, 11, (3), pp. 582592.
    6. 6)
      • 13. Srinu, S., Sabat, S.L.: ‘FPGA implementation of spectrum sensing based on energy detection for cognitive radio’. Proc. Int. Conf. on Communication Control and Computing Technologies (ICCCCT), 2010, pp. 126131.
    7. 7)
      • 3. Boccardi, F., Heath, R. W., Lozano, A., et al: ‘Five disruptive technology directions for 5G’, IEEE Commun. Mag., 2014, 52, (4), pp. 7480.
    8. 8)
      • 10. Rebeiz, E., Urriza, P., Cabric, D., et al: ‘Optimizing wideband cyclostationary spectrum sensing under receiver impairments’, IEEE Trans. Signal Process., 2013, 61, (15), pp. 39313943.
    9. 9)
      • 8. Yucek, T., Arslan, H.: ‘A survey of spectrum sensing algorithms for cognitive radio applications’, IEEE Commun. Surv. Tutorials, 2009, 11, (1), pp. 116130.
    10. 10)
      • 29. Khan, S.A.: ‘Digital design of signal processing systems: a practical approach’ (Wiley, UK, 2011).
    11. 11)
      • 4. Zeng, Y., Liang, Y.C.: ‘Spectrum-sensing algorithms for cognitive radio based on statistical covariances’, IEEE Trans. Veh. Technol., 2009, 58, (4), pp. 18041815.
    12. 12)
      • 22. Lundn, J., Koivunen, V., Huttunen, A., et al: ‘Spectrum sensing in cognitive radios based on multiple cyclic frequencies’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2007, pp. 3743.
    13. 13)
      • 19. Chaudhari, S., Kosunen, M., Mäkinen, S., et al: ‘Performance evaluation of cyclostationary-based cooperative sensing using field measurements’, IEEE Trans. Veh. Technol., 2016, 65, (4), pp. 19821997.
    14. 14)
      • 17. Turunen, V., Kosunen, M., Huttunen, A., et al: ‘Implementation of cyclostationary feature detector for cognitive radios’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2009, pp. 14.
    15. 15)
      • 2. Bhat, P., Nagata, S., Campoy, L., et al: ‘LTE-Advanced: an operator perspective’, IEEE Commun. Mag., 2012, 50, (2), pp. 104114.
    16. 16)
      • 21. Dandawate, A.V., Giannakis, G. B.: ‘Statistical tests for presence of cyclostationarity’, IEEE Trans Sig. Process., 1994, 42, (9), pp. 23552369.
    17. 17)
      • 7. Chaudhari, S.: ‘Phd thesis: spectrum sensing for cognitive radios: algorithms, performance and limitations’, phdthesis, Aalto University School of Electrical Engineering, Nov. 2012.
    18. 18)
      • 28. Crenshaw, J.W.: ‘Math toolkit for real-time development’ (CRC Press, USA, 2000).
    19. 19)
      • 27. Walther, J.S.: ‘The story of unified CORDIC’, J. VLSI Signal Process., 2000, 25, (2), pp. 107112.
    20. 20)
      • 20. Gardner, W.A., Franks, L.: ‘Characterization of cyclostationary random signal processes’, IEEE Trans. Inf. Theory, 1975, 21, (1), pp. 414.
    21. 21)
      • 16. De la Roche, G., Alayn Glazunov, A., Allen, B.: ‘LTE-Advanced and next generation wireless networks: channel modelling and propagation’ (Wiley, USA, 2012).
    22. 22)
      • 6. Hossain, E., Niyato, D., Han, Z., et al: ‘Dynamic spectrum access and management in cognitive radio networks’ (Cambridge, USA, 2009).
    23. 23)
      • 14. Chaitanya, G.V., Rajalakshmi, P., Desai, U. B., et al: ‘Real time hardware implementable spectrum sensor for cognitive radio applications’. Proc. Int. Conf. on Signal Processing and Communications (SPCOM), 2012, pp. 15.
    24. 24)
      • 15. Joshi, G.P., Nam, S.Y., Kim, S.W., et al: ‘Cognitive radio wireless sensor networks: applications, challenges and research trends’, Sensors, 2013, 13, (9), pp. 11 19611 228.
    25. 25)
      • 11. Kosunen, M., Turunen, V., Kokkinen, K., et al: ‘Survey and analysis of cyclostationary signal detector implementations on FPGA’, IEEE J. Emerg. Sel. Topics Circuits Syst., 2013, 3, (4), pp. 541551.
    26. 26)
      • 18. Kallioinen, S., Vääräkangas, M., Hui, P., et al: ‘Multi-mode, multi-band spectrum sensor for cognitive radios embedded to a mobile phone’. Proc. Int. Conf. Cognitive Radio Oriented Wireless Networks and Communications (CROWNCOM), 2011, pp. 236240.
    27. 27)
      • 25. Meher, P.K., Valls, J., Juang, T.-B., et al: ‘50 years of CORDIC: algorithms, architectures, and applications’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2009, 56, (9), pp. 18931907.
    28. 28)
      • 12. IEEE, ‘Cognitive wireless RAN medium access control (MAC) and physical layer (PHY) specifications’, IEEE 802.22 b Std., 2015.
    29. 29)
      • 9. Lundn, J., Kassam, S.A., Koivunen, V.: ‘Robust nonparametric cyclic correlation-based spectrum sensing for cognitive radio’, IEEE Trans. Signal Process., 2010, 58, (1), pp. 3852.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0292
Loading

Related content

content/journals/10.1049/iet-cds.2017.0292
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address