Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Innovative model for ternary QCA gates

Implementation of basic ternary logic gates is more complex than binary gates in quantum-dot cellular automata (QCA) technology. Several models have been presented for designing ternary logic gates. Most of these models are different solutions and are based on manual calculations. It seems that no simulation tool for designing ternary QCA (tQCA) logic gates has been presented. Unlike previous works, this study is an attempt to introduce an alternative model and the related software for tQCA logic gates. Prominent basic ternary logic gates – such as Min gate, Max gate and inverter – are proposed and simulated in the newly designed TQCAsim software which is an accurate simulation and design tool and is based on the algorithm proposed in this study. Unlike QCA designer software, which has been designed for binary QCA, TQCAsim is designed exclusively for tQCA. Thus, this software can be used to verify and implement the proposed tQCA gates and even earlier designs.

References

    1. 1)
      • 5. Yang, T., Kiehl, R.A., Chua, L.O.: ‘Tunneling phase logic cellular neural networks’, Int. J. Bifurcation Chaos, 2001, 11, (12), pp. 28952911.
    2. 2)
      • 23. Pulecio, J.F., Bhanja, S.: ‘Reliability of bi-stable single domain nano magnets for cellular automata’. 7th IEEE Conf. Nanotechnology, Hong Kong, China, 2–5 August 2007, pp. 782786.
    3. 3)
      • 21. Mohammadi, M.N., Sabbaghi-Nadooshan, R.: ‘Introducing a novel model based on particle wave duality for energy dissipation analysis in MQCA circuits’, J. Comput. Electron., 2016, 15, (2), pp. 683896.
    4. 4)
      • 26. Arjmand, M.A., Soryani, M., Navi, K.: ‘Coplanar wire crossing in quantum cellular automata using a ternary cell’, IET Circuits Dev. Syst., 2013, 7, (5), pp. 263272.
    5. 5)
      • 15. Janez, M., Bajec, L.I., Pecar, P., et al: ‘Automatic design of optimal logic circuits based on ternary quantum-dot cellular automata’. World Scientific and Engineering Academy and Society (WSEAS), 2008, vol. 7, no. 9, pp. 919928.
    6. 6)
      • 10. Tour, J.M.: ‘Synthesis and testing of components’, Acc. Chem. Res., 2000, 33, (11), pp. 791804.
    7. 7)
      • 3. Cul, Y., Lieber, C.: ‘Functional nanoscale electronic devices assembled using silicon nanowire building blocks’, Science, 2001, 291, (5505), pp. 851853.
    8. 8)
      • 8. Terzioglu, E., Beasley, M.R.: ‘Complementary Josephson junction devices and circuits: a possible new approach to superconducting electronics’, IEEE Trans. Appl. Supercond., 1998, 8, (2), pp. 4853.
    9. 9)
      • 6. Maezawa, K.: ‘Resonant tunneling diodes and their application to high-speed circuits’. IEEE Compound Semiconductor Integrated Circuit Symp., Palm Springs, CA, USA, 30 October–2 November 2005.
    10. 10)
      • 27. Levi, A.F.J.: ‘Applied quantum mechanics’ (Cambridge University Press, 2006, 2nd edn.), pp. 117155.
    11. 11)
      • 4. Bachtold, A., Hadley, P., Nakanishi, T., et al: ‘Logic circuits with carbon nanotube transistors’, Science, 2001, 294, (5545), pp. 13171320.
    12. 12)
      • 2. Walus, K., Jullien, G.A., Dimitrov, V.S.: ‘Computer arithmetic structures for quantum cellular automata’. The Thirty-Seventh Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, USA, 9–12 November 2003, pp. 14351439.
    13. 13)
      • 12. Bajec, L.I., Zimic, N., Mraz, M.: ‘The ternary quantum-dot cell and ternary logic’, Nanotechnology, 2006, 17, (8), pp. 19371942.
    14. 14)
      • 29. Navi, K., Chabi, A.M., Sayedsalehi, S.: ‘A novel seven input majority gate in quantum-dot cellular automata’, Int. J. Comput. Sci. Issues, 2012, 9, (1), pp. 8488.
    15. 15)
      • 11. Mohammadi, M., Niknafs, A., Eshghi, M.: ‘Controlled gates for multi-level quantum computation’, Quantum Inf. Process., 2011, 10, (2), pp. 241256.
    16. 16)
      • 7. Flatte, M.E., Vignale, G.: ‘Unipolar spin diodes and transistors’, Appl. Phys. Lett., 2001, 78, (9), pp. 12731275.
    17. 17)
      • 16. Tehrani, M.A., Bahrami, S., Navi, K.: ‘A novel ternary quantum-dot cell for solving majority voter gate problem’, Appl. Nanosci., 2013, 4, (3), pp. 255262.
    18. 18)
      • 24. http://www.tqca.ir/.
    19. 19)
      • 19. Das, K., De, D., De, M.: ‘Realisation of semiconductor ternary quantum dot cellular automata’, IET Micro Nano Lett., 2013, 8, (5), pp. 258263.
    20. 20)
      • 13. Pecar, P., Ramsak, A., Zimic, N., et al: ‘Adiabatic pipelining: a key to ternary computing with quantum dots’, Nanotechnology, 2008, 19, (49), p. 495401.
    21. 21)
      • 22. Cowburn, R.P.: ‘Digital nanomagnetic logic’. 61st Device Research Conf., Utah, 23–25 June 2003, pp. 111114.
    22. 22)
      • 14. Pecar, P., Janez, M., Zimic, N., et al: ‘The ternary quantum-dot cellular automata memorizing cell’. Computer Society Annual Symp. on VLSI, Tampa, Florida, USA, 13–15 May 2009, pp. 223228.
    23. 23)
      • 1. Lent, C.S., Tougaw, P.D., Porod, W., et al: ‘Quantum cellular automata’, Nanotechnology, 1993, 4, (1), pp. 4957.
    24. 24)
      • 18. Amlani, I., Orlov, A.O., Kummamuru, R.K., et al: ‘Experimental demonstration of a leadless quantum-dot cellular automata cell’, Appl. Phys. Lett., 2000, 77, (5), pp. 738740.
    25. 25)
      • 25. Tehrani, M.A., Navi, K.: ‘A novel quantum-dot cellular automata for implementation of multi-valued logic’. Nano Today Conf., Singapore, 2–5 August 2009.
    26. 26)
      • 17. Lombardi, F., Huang, J.: ‘Design and test of digital circuits by quantum-dot cellular automata’ (Artech House Publishers, 2007, 1st edn.), pp. 4649.
    27. 27)
      • 20. Lent, C.S., Isaksen, B., Lieberman, M.: ‘Molecular quantum-dot cellular automata’, J. Am. Chem. Soc., 2003, 125, (4), pp. 10561063.
    28. 28)
      • 9. Oya, T., Asai, T., Fukui, T., et al: ‘A majority-logic nanodevice using a balanced pair of single-electron boxes’, J. Nanosci. Nanotechnol., 2002, 2, (3-4), pp. 3333342.
    29. 29)
      • 28. Navi, K., Sayedsalehi, S., Farazkish, R., et al: ‘Five-input majority gate, a new device for quantum-dot cellular automata’, J. Comput. Theor. Nanosci., 2010, 7, (8), pp. 18.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0276
Loading

Related content

content/journals/10.1049/iet-cds.2017.0276
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address