access icon free Dual frequency MEMS resonator through mixed electrical and mechanical coupling scheme

Miniaturised transceivers are essential in multiband wireless communication systems for higher data rates and low power consumption. Microelectromechanical system (MEMS) resonator filters are actively considered for deployment in transceivers for radio frequency and intermediate frequency (IF) signal filter and oscillator applications. In this study, the authors propose dual frequency capacitive transduced MEMS resonator with two-port electrical configuration. Clamped–clamped beam resonator was selected to serve as a basic resonant tank for the filter concept validation. Five design strategies low loss structural material, array design, mixed electrical and mechanical coupling scheme, sub-micro meter transduction gap and large transduction area were explored. With these strategies, the device achieves dual band filter characteristics, narrow pass band, desired bandwidth, low insertion loss and better stop band rejection. Dual frequency response of the proposed resonator is demonstrated at centre frequencies 400 kHz and 2.57 MHz with a narrow pass band of 3 and 20 kHz, respectively. Low insertion loss of 19.8 and 25.6 dB for frequencies centred at 400 kHz and 2.57 MHz, respectively and stop band rejection >35 dB was achieved. The proposed MEMS resonator may be incorporated in the implementation of dual band pass filter for IF signal filter and dual frequency oscillator applications.

Inspec keywords: band-pass filters; frequency response; band-stop filters; micromechanical resonators; radio transceivers

Other keywords: miniaturised transceivers; IF signal filter; loss 25.6 dB; mixed electrical-mechanical coupling scheme; frequency 20 kHz; dual frequency oscillator applications; design strategies; dual frequency capacitive transduced MEMS resonator; frequency 3 kHz; filter concept validation; frequency 400 kHz; frequency 2.57 MHz; dual frequency response; clamped-clamped beam resonator; radio frequency signal filter; dual bandpass filter; sub-micrometer transduction gap; transduction area; two-port electrical configuration; dual frequency MEMS resonator filter; low loss structural material; stop band rejection; multiband wireless communication systems; microelectromechanical system; resonant tank; array design; loss 19.8 dB; data rates; low power consumption; narrow passband filter; intermediate frequency signal filter; transceivers

Subjects: Filters and other networks; Radio links and equipment; MEMS and NEMS device technology

References

    1. 1)
      • 20. Paci, D., Mastrangeli, M., Nannini, A., et al: ‘Modeling and characterization of three kinds of MEMS resonators fabricated with a thick polysilicon technology’, Analog Integr. Circuits Signal Process., 2006, 48, pp. 4147.
    2. 2)
      • 24. Hammad, B.K.: ‘Natural frequencies and mode shapes of mechanically coupled microbeam resonators with an application to micromechanical filters’, Hindawi J. Shock Vib., 2014.
    3. 3)
      • 9. Gao, A., Gong, S.: ‘Harnessing mode conversion for spurious mode suppression in AlN laterally vibrating resonators’, IEEE J. Microelectromech. Syst., 2016, 25, (3), pp. 450458.
    4. 4)
      • 34. Li, M.-H., Chen, C.-Y., Li, C.-S., et al: ‘Design and characterization of a dual-mode CMOS-MEMS resonator for TCF manipulation’, IEEE J. Microelectromech. Syst., 2015, 24, (2), pp. 446457.
    5. 5)
      • 30. Ouakad, H.M.: ‘An electrostatically actuated MEMS arch band-pass filter’, Hindawi J. Shock Vib., 2013, 30, (20), pp. 809819.
    6. 6)
      • 33. Ouakad, H.M., Nayfeh, A.H., Choura, S., et al: ‘Nonlinear feedback control and dynamics of an electrostatically actuated microbeam filter’. Proc. of ASME Int. Mechanical Engineering Congress and Exposition, Boston, USA, 2008.
    7. 7)
      • 23. Chen, C.-Y., Li, M.-H., Chin, C.-H., et al: ‘Implementation of a CMOS- MEMS filter through a mixed electrical and mechanical coupling scheme’, J. Microelectromech. Syst., 2016, 25, (2), pp. 262274.
    8. 8)
      • 25. Riverola, M., Sobreviela, G., Uranga, A., et al: ‘Intrinsic feed through current cancellation in a seesaw CMOS-MEMS resonator for integrated oscillators’. IEEE Int. Frequency Control Symp., 2016, pp. 14.
    9. 9)
      • 12. Nguyen, C. T. C.: ‘Vibrating RF MEMS for low power communications (invited)’. Proc. of MRS Fall Meeting, Boston, Massachusetts, 2002, pp. J12.1.1J2.1.12.
    10. 10)
      • 29. Lopez, J.L., Verd, J., Uranga, A., et al: ‘A CMOS–MEMS RF-tunable bandpass filter based on two high-Q 22-MHz polysilicon clamped-clamped beam resonators’, IEEE Electron Device Lett., 2009, 30, (7), pp. 718720.
    11. 11)
      • 18. Casset, F., Durandl, C., Dedieu, S., et al: ‘3D multi-frequency MEMS electromechanical resonator design’. IEEE 10th Int. Conf. Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Microsystems, Delft, 2009, pp. 15.
    12. 12)
      • 21. Li, M.-H., Chen, W.-C., Li, S.S.: ‘Mechanically coupled CMOS-MEMS free-free beam resonator arrays with enhanced power handling capability’, IEEE Trans. Ultrason. Ferroelectr. Frequency Control, 2012, 59, (3), pp. 346357.
    13. 13)
      • 1. Basu, J., Bhattacharyya, T.K.: ‘Microelectromechanical resonators for radio frequency communication applications’. Microsyst. Technol., 2011, 17, (10–11), pp. 15571580.
    14. 14)
      • 4. Nguyen, C.T.C., Katehi, L.P.B., Rebeiz, G.M.: ‘Micromachined devices for wireless communications (invited)’, Proc. IEEE, 1998, 86, (8), pp. 17561768.
    15. 15)
      • 27. Giner, J., Uranga, A., Torres, F., et al: ‘Fully CMOS integrated bandpass filter based on mechanical coupling of two RF MEMS resonators’, IEEE Electron. Lett., 2010, 46, (9), pp. 640641.
    16. 16)
      • 8. Rinaldi, M., Zuo, C., Van der Spiegel, J., et al: ‘Reconfigurable CMOS oscillator based on multifrequency AIN contour-mode MEMS resonators’, IEEE Trans. Electron Devices, 2011, 58, (5), pp. 12811286.
    17. 17)
      • 11. Wang, R., Bhave, S.A., Bhattacharjee, K.: ‘High kt2×Q multi-frequency lithium niobate resonators’. in IEEE Int. Conf. Micro Electro Mechanical Systems (MEMS), Taipei, Taiwan, 2013.
    18. 18)
      • 14. Basu, J., Chakraborty, S., Bhattacharyya, T. K.: ‘Micromechanical radial-contour mode disk resonator for a CMOS-MEMS oscillator’. Annual IEEE India Conf. (INDICON), 2010, pp. 14.
    19. 19)
      • 6. Nguyen, C. T. C.: ‘RF MEMS in wireless architectures’. Proc. of the 42nd Annual Design Automation Conf., Anaheim, California, USA, 2005, pp. 416420.
    20. 20)
      • 26. Wang, K., Yu, Y., Wong, A. C., et al: ‘VHF free free beam high Q micromechanical resonator’. 12th IEEE Int. Micro Electro Mechanical Conf., Florida, 1999, pp. 453458.
    21. 21)
      • 31. Hammad, B.K., Abdel Rahman, E.M., Nayfeh, A.H.: ‘Modeling and analysis of electrostatic MEMS filters’,  J. Nonlinear Dyn., 2010, 60, pp. 385401.
    22. 22)
      • 17. Demirci, M., Nguyen, C.T.C.: ‘Mechanically corner-coupled square microresonator array for reduced series motional resistance’, J. Microelectromech. Syst., 2006, 15, (6), pp. 14191436.
    23. 23)
      • 5. Nguyen, C. T. C.: ‘RF MEMS for wireless applications’. Conf. Digest, Device Research Conf., Santa Barbara, California, 2002, pp. 912.
    24. 24)
      • 32. Ouakad, H.M., Nayfeh, A.H., Choura, S., et al: ‘Nonlinear feedback controller of a microbeam resonator’, J. Vib. Control, 2013, 21, (9), pp. 16801697.
    25. 25)
      • 19. Riverola, M., Sobreviela, G., Torres, F., et al: ‘Single-resonator dual-frequency BEOL-embedded CMOS-MEMS oscillator with low-power and ultra-compact TIA core’, IEEE Electron Device Lett., 2017, 38, (2), pp. 273276.
    26. 26)
      • 3. Richards, R.J., De Los Santos, H.J.: ‘MEMS for RF/microwave wireless applications: the next wave Part II’, Microwave J., 2001.
    27. 27)
      • 22. Casinovi, G., Gao, X., Ayazi, F.: ‘Lamb waves and resonant modes in rectangular-bar silicon resonators’, J. Microelectromech. Syst., 2010, 19, (4), pp. 827839.
    28. 28)
      • 16. Lee, S., Nguyen, C.T.C.: ‘Mechanically-coupled micromechanical arrays for improved phase noise’. Proc. of IEEE Int. Ultrasonics, Ferroelectrics, and Frequency Control 50th Anniversary Joint Conf., 2004, pp. 280286.
    29. 29)
      • 13. Wong, A.C., Nguyen, C.T.C.: ‘Micromechanical mixer-filters (mixlers)’, J. Microelectromech. Syst., 2004, 13, (1), pp. 100112.
    30. 30)
      • 7. Larson, L. E.: ‘Microwave MEMS technology for next-generation wireless communications’. IEEE MTT-S Int. Microwave Symp. Digest, Anaheim, CA, USA, vol. 3, 1999, pp. 10731076.
    31. 31)
      • 28. Amar, A.B., Bahloul, D., Gagnon, F., et al: ‘MEMS filter's design and modeling based on width-extensional mode plate resonator for wireless applications’, Microsyst. Technol., 2015, 21, pp. 15671576.
    32. 32)
      • 2. Hilbert, J. L.: ‘RF-MEMS for wireless communications’, IEEE Commun. Mag., 2008, 46, (8), pp. 6874.
    33. 33)
      • 15. Bannon, F.D., Clark, J.R., Nguyen, C.T.C.: ‘High-Q HF microelectromechanical filters’, IEEE J. Solid-State Circuits, 2000, 35, (4), pp. 512526.
    34. 34)
      • 10. Zhang, H., Liang, J., Zhou, X., et al: ‘Transverse mode spurious resonance suppression in lamb wave mems resonators: theory, modeling, and experiment’, IEEE Trans. Electron Devices, 2015, 62, (9), pp. 30343041.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0250
Loading

Related content

content/journals/10.1049/iet-cds.2017.0250
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading