Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Development of integrated microsystem for hydrogen gas detection

A low-power microelectromechanical system-based metal–oxide gas sensor along with integrated signal conditioning unit is presented in this study to detect and quantify the variation of H2 gas concentrations. The interface circuit controls the sensor operating temperature, measures the H2 gas concentration, contributes a user-friendly interface and can be used with any suitable sensor network. A PIC16F877A microcontroller has been used for this purpose. The temperature of the sensors was stabilised by controlling the actuating voltage of the microheater. Temperatures of the microheater depend on the output voltage of the digital-to-analogue converter (DAC) and were measured by sampling the heater resistance through the use of a voltage divider and analogue-to-digital converters (ADCs). A microcontroller accordingly adjusts the output of DAC's in order to apply the appropriate steering voltage to the heaters. The method employed to measure the concentration of gases is to sample the voltage drop over the resistances of the sensors by ADCs. Alarming system for safety measure was also implemented in this design. The preventive action was taken by introducing an additional feature of wireless communication by sending short message service via global system for mobile modem to the designated emergency number.

References

    1. 1)
      • 28. Brunet, J., Parra Garcia, V., Pauly, A., et al: ‘An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level’, Sens. Actuators B, 2008, 134, pp. 632639.
    2. 2)
      • 27. Ali Mazidi, M., McKinlay, R.D., Causey, D.: ‘PIC microcontroller and embedded system’ (Pearson, New Jersey, 2008, 2nd edn. 10).
    3. 3)
      • 21. Cardinali, G.C., Dori, L., Fiorini, M., et al: ‘A smart sensor system for carbon monoxide detection’, Analog Integr. Circuits Signal Process., 1997, 14, pp. 275296.
    4. 4)
      • 19. Hassan, J.J., Mahdi, M.A., Chin, C.W., et al: ‘A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays’, Sens. Actuators B, Chem., 2013, 176, pp. 360367.
    5. 5)
      • 14. Bhattacharyya, P., Basu, P.K., Mondal, B., et al: ‘A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing hydrogen’, Microelectron. Reliab., 2008, 48, pp. 17721779.
    6. 6)
      • 10. Suehle, J.S., Cavicchi, R.E., Gaitan, M., et al: ‘Tin oxide gas sensor fabricated using CMOS micro hotplates and in situ processing’, IEEE Electron. Device Lett., 1993, 14, pp. 118120.
    7. 7)
      • 29. Khanna, V.K., Prasad, M., Dwivedi, V.K., et al: ‘Design and electro-thermal simulation of a polysilicon microheater on a suspended membrane for use in gas sensing’, Indian J. Pure Appl. Phys., 2007, 45, p. 336.
    8. 8)
      • 24. Somova, A., Baranovb, A., Spirjakinb, D., et al: ‘Deployment and evaluation of a wireless sensor network for hydrogen leak detection’, Sens. Actuators A, 2012, 202, pp. 217225.
    9. 9)
      • 18. Roy, S., Banerjee, N., Sarkar, C.K., et al: ‘Development of an ethanol sensor based on CBD grown ZnO nanorods’, Solid-State Electron., 2013, 87, pp. 4350.
    10. 10)
      • 8. Roy, S., Majhi, T., Kundu, A., et al: ‘Design, fabrication and simulation of coplanar microheater using nickel alloy for low temperature gas sensing application’, Sens. Lett., 2011, 9, pp. 18.
    11. 11)
      • 23. Kwakye, S., Baeumner, A.: ‘An embedded system for portable electrochemical detection’, Sens. Actuators B, 2006, 123, pp. 336343.
    12. 12)
      • 16. Futane, N., Bhattacharyya, P., Barma, S., et al: ‘Nanocrystalline ZnO based MEMS gas sensors with CMOS ASIC for mining applications’, Int. J. Smart Sens. Intell. Syst., 2008, 1, pp. 430442.
    13. 13)
      • 31. Kim, J.Y., Chu, C.H., Shin, S.M., et al: ‘Designing integrated sensing systems for real-time air quality monitoring’, 2014.
    14. 14)
      • 6. Simon, I., Barsan, N., Bauer, M., et al: ‘Micromachined metal oxide gas sensors: opportunities to improve sensor performance’, Sens. Actuators B, 2001, 73, pp. 126.
    15. 15)
      • 13. Sen, A.: ‘Semiconducting oxides in gas sensing’, Sci. Cult., 2005, 71, pp. 178184.
    16. 16)
      • 22. Khakpoura, R., Hamidonb, M.N., Vandenbosch, G.A.E.: ‘Development of an auto-calibrated interfacing circuit for thick film multi-gas sensor’, Sens. Actuators A, 2013, 204, pp. 4857.
    17. 17)
      • 4. Wise, K.D.: ‘Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage’, Sens. Actuators A, 2007, 136, pp. 3950.
    18. 18)
      • 11. Sberveglieri, G., Hellmich, W., Muller, G.: ‘Silicon hotplates for metal oxide gas sensor elements’, Microsyst. Technol., 1997, 3, pp. 183190.
    19. 19)
      • 17. Banerjee, N., Roy, S., Sarkar, C.K., et al: ‘High dynamic range methanol sensor based on aligned ZnO nanorods’, IEEE Sens. J., 2013, 13, (5), p. 1669.
    20. 20)
      • 30. Li, X.: ‘Controllable hydrothermal growth of ZnO nanowires on cellulose paper for flexible sensors and electronics’, IEEE Sens. J., 2015, 15, (11), pp. 61006107.
    21. 21)
      • 1. Baroncini, M., Placidi, P., Cardinali, G.C., et al: ‘A simple interface circuit for micromachined gas sensors’, Sens. Actuators A, 2003, 109, pp. 131136.
    22. 22)
      • 2. Depari, A., Flammini, A.: ‘Flexible and low-cost interface circuit for electrochemical and resistive gas sensors’, Procedia Eng., 2012, 47, pp. 148151.
    23. 23)
      • 12. Courbat, J., Briand, D., Yue, L., et al: ‘Drop-coated metal–oxide gas sensor on polyimide foil with reduced power consumption for wireless applications’, Sens. Actuators B, 2011, 161, pp. 862868.
    24. 24)
      • 20. Graf, M., Barrettino, D., Zimmermann, M., et al: ‘CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry’, IEEE Sens. J., 2004, 4, pp. 69.
    25. 25)
      • 9. Roy, S., Sarkar, C.K., Bhattacharyya, P.: ‘Low temperature fabrication of a highly sensitive methane sensor with embedded co-planar nickel alloy microheater on MEMS platform’, Sens. Lett., 2012, 10, pp. 110.
    26. 26)
      • 25. Somova, A., Baranovb, A., Spirjakinb, D., et al: ‘Development of wireless sensor network for combustible gas monitoring’, Sens. Actuators A, Phys., 2011, 171, pp. 398405.
    27. 27)
      • 3. Ramya, V., Palaniappan, B.: ‘Embedded system for hazardous gas detection and alerting’, Int. J. Distrib. Parallel Syst. (IJDPS), 2012, 3, (3), pp. 287300.
    28. 28)
      • 15. Bhattacharyya, P., Basu, P.K., Lang, C., et al: ‘Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing hydrogen’, Sens. Actuators B, 2008, 129, pp. 551557.
    29. 29)
      • 26. Ruedi, P.F., Heim, P., Mortara, A., et al: ‘Interface circuit for metal–oxide gas sensor’. Proc. IEEE Custom Integrated Circuits Conf., San Diego, USA, 6–9 May 2001.
    30. 30)
      • 5. Roy, S., Sarkar, C.K., Bhattacharyya, P.: ‘Ultrasensitive Pd–Ag/ZnO/nickel alloy-based metal–insulator-metal methane sensor on micromachined silicon substrate’, IEEE Sens. J., 2012, 12, pp. 25262527.
    31. 31)
      • 7. Mitzner, K.D., Strnhagen, J., Glipeau, D.N.: ‘Development of micromachined hazardous gas sensor array’, Sens. Actuators B, 2003, 93, pp. 9299.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0243
Loading

Related content

content/journals/10.1049/iet-cds.2017.0243
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address