Development of integrated microsystem for hydrogen gas detection

Development of integrated microsystem for hydrogen gas detection

For access to this article, please select a purchase option:

Buy article PDF
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Your details
Why are you recommending this title?
Select reason:
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A low-power microelectromechanical system-based metal–oxide gas sensor along with integrated signal conditioning unit is presented in this study to detect and quantify the variation of H2 gas concentrations. The interface circuit controls the sensor operating temperature, measures the H2 gas concentration, contributes a user-friendly interface and can be used with any suitable sensor network. A PIC16F877A microcontroller has been used for this purpose. The temperature of the sensors was stabilised by controlling the actuating voltage of the microheater. Temperatures of the microheater depend on the output voltage of the digital-to-analogue converter (DAC) and were measured by sampling the heater resistance through the use of a voltage divider and analogue-to-digital converters (ADCs). A microcontroller accordingly adjusts the output of DAC's in order to apply the appropriate steering voltage to the heaters. The method employed to measure the concentration of gases is to sample the voltage drop over the resistances of the sensors by ADCs. Alarming system for safety measure was also implemented in this design. The preventive action was taken by introducing an additional feature of wireless communication by sending short message service via global system for mobile modem to the designated emergency number.


    1. 1)
      • 1. Baroncini, M., Placidi, P., Cardinali, G.C., et al: ‘A simple interface circuit for micromachined gas sensors’, Sens. Actuators A, 2003, 109, pp. 131136.
    2. 2)
      • 2. Depari, A., Flammini, A.: ‘Flexible and low-cost interface circuit for electrochemical and resistive gas sensors’, Procedia Eng., 2012, 47, pp. 148151.
    3. 3)
      • 3. Ramya, V., Palaniappan, B.: ‘Embedded system for hazardous gas detection and alerting’, Int. J. Distrib. Parallel Syst. (IJDPS), 2012, 3, (3), pp. 287300.
    4. 4)
      • 4. Wise, K.D.: ‘Integrated sensors, MEMS, and microsystems: reflections on a fantastic voyage’, Sens. Actuators A, 2007, 136, pp. 3950.
    5. 5)
      • 5. Roy, S., Sarkar, C.K., Bhattacharyya, P.: ‘Ultrasensitive Pd–Ag/ZnO/nickel alloy-based metal–insulator-metal methane sensor on micromachined silicon substrate’, IEEE Sens. J., 2012, 12, pp. 25262527.
    6. 6)
      • 6. Simon, I., Barsan, N., Bauer, M., et al: ‘Micromachined metal oxide gas sensors: opportunities to improve sensor performance’, Sens. Actuators B, 2001, 73, pp. 126.
    7. 7)
      • 7. Mitzner, K.D., Strnhagen, J., Glipeau, D.N.: ‘Development of micromachined hazardous gas sensor array’, Sens. Actuators B, 2003, 93, pp. 9299.
    8. 8)
      • 8. Roy, S., Majhi, T., Kundu, A., et al: ‘Design, fabrication and simulation of coplanar microheater using nickel alloy for low temperature gas sensing application’, Sens. Lett., 2011, 9, pp. 18.
    9. 9)
      • 9. Roy, S., Sarkar, C.K., Bhattacharyya, P.: ‘Low temperature fabrication of a highly sensitive methane sensor with embedded co-planar nickel alloy microheater on MEMS platform’, Sens. Lett., 2012, 10, pp. 110.
    10. 10)
      • 10. Suehle, J.S., Cavicchi, R.E., Gaitan, M., et al: ‘Tin oxide gas sensor fabricated using CMOS micro hotplates and in situ processing’, IEEE Electron. Device Lett., 1993, 14, pp. 118120.
    11. 11)
      • 11. Sberveglieri, G., Hellmich, W., Muller, G.: ‘Silicon hotplates for metal oxide gas sensor elements’, Microsyst. Technol., 1997, 3, pp. 183190.
    12. 12)
      • 12. Courbat, J., Briand, D., Yue, L., et al: ‘Drop-coated metal–oxide gas sensor on polyimide foil with reduced power consumption for wireless applications’, Sens. Actuators B, 2011, 161, pp. 862868.
    13. 13)
      • 13. Sen, A.: ‘Semiconducting oxides in gas sensing’, Sci. Cult., 2005, 71, pp. 178184.
    14. 14)
      • 14. Bhattacharyya, P., Basu, P.K., Mondal, B., et al: ‘A low power MEMS gas sensor based on nanocrystalline ZnO thin films for sensing hydrogen’, Microelectron. Reliab., 2008, 48, pp. 17721779.
    15. 15)
      • 15. Bhattacharyya, P., Basu, P.K., Lang, C., et al: ‘Noble metal catalytic contacts to sol–gel nanocrystalline zinc oxide thin films for sensing hydrogen’, Sens. Actuators B, 2008, 129, pp. 551557.
    16. 16)
      • 16. Futane, N., Bhattacharyya, P., Barma, S., et al: ‘Nanocrystalline ZnO based MEMS gas sensors with CMOS ASIC for mining applications’, Int. J. Smart Sens. Intell. Syst., 2008, 1, pp. 430442.
    17. 17)
      • 17. Banerjee, N., Roy, S., Sarkar, C.K., et al: ‘High dynamic range methanol sensor based on aligned ZnO nanorods’, IEEE Sens. J., 2013, 13, (5), p. 1669.
    18. 18)
      • 18. Roy, S., Banerjee, N., Sarkar, C.K., et al: ‘Development of an ethanol sensor based on CBD grown ZnO nanorods’, Solid-State Electron., 2013, 87, pp. 4350.
    19. 19)
      • 19. Hassan, J.J., Mahdi, M.A., Chin, C.W., et al: ‘A high-sensitivity room-temperature hydrogen gas sensor based on oblique and vertical ZnO nanorod arrays’, Sens. Actuators B, Chem., 2013, 176, pp. 360367.
    20. 20)
      • 20. Graf, M., Barrettino, D., Zimmermann, M., et al: ‘CMOS monolithic metal-oxide sensor system comprising a microhotplate and associated circuitry’, IEEE Sens. J., 2004, 4, pp. 69.
    21. 21)
      • 21. Cardinali, G.C., Dori, L., Fiorini, M., et al: ‘A smart sensor system for carbon monoxide detection’, Analog Integr. Circuits Signal Process., 1997, 14, pp. 275296.
    22. 22)
      • 22. Khakpoura, R., Hamidonb, M.N., Vandenbosch, G.A.E.: ‘Development of an auto-calibrated interfacing circuit for thick film multi-gas sensor’, Sens. Actuators A, 2013, 204, pp. 4857.
    23. 23)
      • 23. Kwakye, S., Baeumner, A.: ‘An embedded system for portable electrochemical detection’, Sens. Actuators B, 2006, 123, pp. 336343.
    24. 24)
      • 24. Somova, A., Baranovb, A., Spirjakinb, D., et al: ‘Deployment and evaluation of a wireless sensor network for hydrogen leak detection’, Sens. Actuators A, 2012, 202, pp. 217225.
    25. 25)
      • 25. Somova, A., Baranovb, A., Spirjakinb, D., et al: ‘Development of wireless sensor network for combustible gas monitoring’, Sens. Actuators A, Phys., 2011, 171, pp. 398405.
    26. 26)
      • 26. Ruedi, P.F., Heim, P., Mortara, A., et al: ‘Interface circuit for metal–oxide gas sensor’. Proc. IEEE Custom Integrated Circuits Conf., San Diego, USA, 6–9 May 2001.
    27. 27)
      • 27. Ali Mazidi, M., McKinlay, R.D., Causey, D.: ‘PIC microcontroller and embedded system’ (Pearson, New Jersey, 2008, 2nd edn. 10).
    28. 28)
      • 28. Brunet, J., Parra Garcia, V., Pauly, A., et al: ‘An optimised gas sensor microsystem for accurate and real-time measurement of nitrogen dioxide at ppb level’, Sens. Actuators B, 2008, 134, pp. 632639.
    29. 29)
      • 29. Khanna, V.K., Prasad, M., Dwivedi, V.K., et al: ‘Design and electro-thermal simulation of a polysilicon microheater on a suspended membrane for use in gas sensing’, Indian J. Pure Appl. Phys., 2007, 45, p. 336.
    30. 30)
      • 30. Li, X.: ‘Controllable hydrothermal growth of ZnO nanowires on cellulose paper for flexible sensors and electronics’, IEEE Sens. J., 2015, 15, (11), pp. 61006107.
    31. 31)
      • 31. Kim, J.Y., Chu, C.H., Shin, S.M., et al: ‘Designing integrated sensing systems for real-time air quality monitoring’, 2014.

Related content

This is a required field
Please enter a valid email address