http://iet.metastore.ingenta.com
1887

Compact thermal noise model for enhancement mode N-polar GaN MOS-HEMT including 2DEG density solution with two sub-bands

Compact thermal noise model for enhancement mode N-polar GaN MOS-HEMT including 2DEG density solution with two sub-bands

For access to this article, please select a purchase option:

Buy article PDF
£12.50
(plus tax if applicable)
Buy Knowledge Pack
10 articles for £75.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

A 135 nm gate length-based low noise enhancement mode N-polar double deck T-shaped gate Gallium Nitride (GaN) Metal Oxide Semiconductor (MOS)-high electron mobility transistor with double insulating layer of high-k dielectrics ZrO2/HfO2 is proposed. The device exhibits maximum transconductance of 0.55 S/mm, maximum drain current density of 1.4 A/mm and minimum noise figure (NFmin) of 0.72 dB at 20 GHz. A compact model for Two Dimensional Electron Gas (2DEG) density is developed by explicit solution of surface potential and Fermi level by considering first two sub-bands of triangular quantum well without using any numerical methods. Based on the surface potential drain current, intrinsic charge, gate capacitance, small signal and thermal noise models are developed. To validate the proposed numerical model, the results are calibrated with TCAD device simulation results and available experimental data from literatures.

References

    1. 1)
      • 1. Panda, D.K., Lenka, T.R.: ‘Effects of trap density on drain current LFN and its model development for E-mode GaN MOS-HEMT’, Superlattices Microstruct., 2017, 112, pp. 374382.
    2. 2)
      • 2. Lee, J.W., Kuliev, A., Kumar, V., et al: ‘Microwave noise characteristics of AlGaN/GaN HEMTs on SiC substrates for broad-band low-noise amplifiers’, IEEE Microw. Wirel. Compon. Lett., 2004, 14, (6), pp. 259261.
    3. 3)
      • 3. Sun, H.F., Alt, A.R., Benedickter, H., et al: ‘High-speed and low-noise AlInN/GaN HEMTs on SiC’, Phys. Status Sol. A, Appl. Mater. Sci., 2011, 208, (2), pp. 429433.
    4. 4)
      • 4. Chen, M.Q., Sutton, W., Smorchkova, I., et al: ‘A 1–25 GHz GaN HEMT MMIC low-noise amplifier’, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (10), pp. 563565.
    5. 5)
      • 5. Sun, H.F., Alt, A.R., Benedickter, H., et al: ‘Low-noise microwave performance of 0.1 μm gate AlInN/GaN HEMTs on SiC’, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (8), pp. 453455.
    6. 6)
      • 6. Lin, Y.S., Wang, C.C., Chen, C.C., et al: ‘A high-performance IBC-hub transceiver for intra-body communication system’, Microw. Opt. Technol. Lett., 2012, 54, (5), pp. 11431153.
    7. 7)
      • 7. Li, B., Wei, L., Wen, C.: ‘Static characteristics and short channel effect in enhancement-mode AlN/GaN/AlNN-polar MISFET with self-aligned source/drain regions’, J. Semicond., 2014, 35, (12), pp. 15.
    8. 8)
      • 8. Singisetti, U., Wong, M.H., Mishra, U.K.: ‘High-performanceN-polar GaN enhancement-mode device technology’, Semicond. Sci. Technol., 2013, 28, (7), pp. 113.
    9. 9)
      • 9. Thorsell, M., Andersson, K., Fagerlind, M., et al: ‘Thermal study of the high-frequency noise in GaN HEMTs’, IEEE Trans. Microw. Theory Tech., 2009, 57, (1), pp. 1926.
    10. 10)
      • 10. Liu, H.Y., Lee, C.S., Liao, F.C., et al: ‘Comparative studies on AlGaN/GaN MOS-HEMTs with stacked La2O3/Al2O3 dielectric structures’, ECS J. Solid State Sci. Technol., 2014, 3, (8), pp. 115N119.
    11. 11)
      • 11. Tsai, C.Y., Wu, T.L., Chin, A.: ‘High-performance GaN MOSFET with high-k LaAlO3/SiO2 gate dielectric’, IEEE Electron Device Lett., 2012, 33, (1), pp. 3537.
    12. 12)
      • 12. Lee, K.T., Huang, C.F., Gong, J., et al: ‘High-performance 1-μm GaN n-MOSFET with MgO/MgO-TiO2 stacked gate dielectrics’, IEEE Electron Device Lett., 2011, 32, (3), pp. 306308.
    13. 13)
      • 13. Van Hove, M., Kang, X.W., Stoffels, S., et al: ‘Fabrication and performance of Au-free AlGaN/GaN-on-silicon power devices with Al2O3 and Si3N4/Al2O3 gate dielectrics’, IEEE Trans. Electron Devices, 2013, 60, (10), pp. 30713078.
    14. 14)
      • 14. Yue, Y.Z., Hao, Y., Zhang, J.C., et al: ‘Gan MOS-HEMT with HfO2 dielectric and Al2O3 interfacial passivation layer grown by atomic layer deposition’, IEEE Electron Device Lett., 2008, 29, (8), pp. 838840.
    15. 15)
      • 15. Kambayashi, H., Nomura, T., Ueda, H., et al: ‘High quality SiO2/Al2O3 gate stack for GaN metal-oxide-semiconductor field-effect transistor’, Jpn. J. Appl. Phys., 2013, 52, (4), pp. 04CF09-104CF09-6.
    16. 16)
      • 16. Yoon, H.S., Min, B.G., Lee, J.M., et al: ‘Microwave low-noise performance of 0.17 μm gate-length AlGaN/GaN HEMTs on SiC with wide head double-deck T-shaped gate’, IEEE Electron Device Lett., 2016, 37, (11), pp. 14071410.
    17. 17)
      • 17. Khandelwal, S., Chauhan, Y.S., Fjeldly, T.A.: ‘Analytical modeling of surface-potential and intrinsic charges in AlGaN/GaN HEMT devices’, IEEE Trans. Electron Devices, 2012, 59, (10), pp. 28562860.
    18. 18)
      • 18. Cheng, X.X., Wang, Y.: ‘A surface-potential-based compact model for AlGaN/GaN MODFETs’, IEEE Trans. Electron Devices, 2011, 58, (2), pp. 448454.
    19. 19)
      • 19. Zhang, J.B., Syamal, B., Zhou, X., et al: ‘A compact model for generic MIS-HEMTs based on the unified 2DEG density expression’, IEEE Trans. Electron Devices, 2014, 61, (2), pp. 314323.
    20. 20)
      • 20. Deng, W.L., Huang, J.K., Ma, X.Y., et al: ‘An explicit surface potential calculation and compact current model for AlGaN/GaN HEMTs’, IEEE Electron Device Lett., 2015, 36, (2), pp. 108110.
    21. 21)
      • 21. Anyaegbunam, A.J.: ‘Simple formulae for the evaluation of all the exactroots (real and complex) of the general cubic’, Niger. J. Technol., 2008, 27, (1), pp. 5055.
    22. 22)
      • 22. Kola, S., Golio, J.M., Maracas, G.N.: ‘An analytical expression for Fermi level versus sheet carrier concentration for HEMT modeling’, IEEE Electron Device Lett., 1988, 9, (3), pp. 136138.
    23. 23)
      • 23. Panda, D.K., Lenka, T.R.: ‘Oxide thickness dependent compact model of channel noise for E-mode AlGaN/GaN MOS-HEMT’, AEUE Int. J. Electron. Commun., 2017, 82, (9), pp. 467473.
    24. 24)
      • 24. Ward, D.E., Dutton, R.W.: ‘A charge-oriented model for MOS transistor capacitances’, IEEE Trans. Electron Devices, 1978, 25, (11), p. 1346.
    25. 25)
      • 25. Amarnath, G., Panda, D.K., Lenka, T.R.: ‘Microwave frequency small-signal equivalent circuit parameter extraction for AlInN/GaN MOSHEMT’, Int. J. RF Microw. Comput. Eng., 2018, 28, (2), pp. 19.
    26. 26)
      • 26. Klaassen, F.M., Prins, J.: ‘Thermal noise of MOS transistors’, Philips Res. Rep., 1967, pp. 505514.
    27. 27)
      • 27. Pospieszalski, M.W.: ‘Modeling of noise parameters of MESFET's and MODFET's and their frequency and temperature dependence’, IEEE Trans. Microw. Theory Tech., 1989, 37, (9), pp. 13401350.
    28. 28)
      • 28. Singisetti, U., Wong, M.H., Speck, J.S., et al: ‘Enhancement-mode N-polar GaN MOS-HFET With 5-nm GaN channel, 510-mS/mm gm, and 0.66-ohm. mm Ron’, IEEE Electron Device Lett., 2012, 33, (1), pp. 2628.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0226
Loading

Related content

content/journals/10.1049/iet-cds.2017.0226
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address