access icon free 3–10 GHz noise-cancelling CMOS LNA using g m -boosting technique

An ultra-wideband (UWB) low-noise amplifier (LNA) using a 0.11 µm CMOS technology is proposed. The common-gate (CG) input stage for wideband input impedance matching and the common-source (CS) stage for noise cancelling are applied. In the proposed LNA, the current of the CG input stage can be significantly reduced by applying the gm -boosting technique using the noise-cancelling CS stage without additional amplifier, and the noise performance can be improved at the same power consumption. For low-power operation, the LNA consumes 2.9 mW and achieves a noise figure (NF) of S 21 between 16.5 and 17.6 dB at S 11, lower than −12.4 and 3.6–3.7 dB at frequencies of 3–10 GHz. In low-noise operation, the LNA consumes 8.3 mW, achieving S 11 of less than −10.7 dB, S 21 of 17.5–18.7 dB, and NF of 2.4–2.9 dB.

Inspec keywords: impedance matching; field effect MMIC; ultra wideband technology; CMOS analogue integrated circuits; low noise amplifiers; MMIC amplifiers; interference suppression; low-power electronics

Other keywords: frequency 3 GHz to 10 GHz; power 8.3 mW; common-source stage; common-gate input stage; ultra-wideband low-noise amplifier; noise-cancelling CMOS LNA; gm-boosting technique; size 0.11 mum; noise performance; UWB LNA; noise figure 16.5 dB to 17.6 dB; noise figure 2.4 dB to 2.9 dB; power consumption; power 2.9 mW; wideband input impedance matching

Subjects: Amplifiers; Electromagnetic compatibility and interference; Microwave integrated circuits; CMOS integrated circuits

References

    1. 1)
      • 10. Zhuo, W., Li, X., Shekhar, S., et al: ‘A capacitor cross-coupled common-gate low-noise amplifier’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2005, 52, (12), pp. 875879.
    2. 2)
      • 19. Lin, Y., Wang, C., Lee, G., et al: ‘High-performance wideband low-noise amplifier using enhanced π-match input network’, IEEE Microw. Wirel. Compon. Lett., 2014, 24, (3), pp. 200202.
    3. 3)
      • 11. Meaamar, A., Boon, C.C., Yeo, K.S., et al: ‘A wideband low power low-noise amplifier in CMOS technology’, IEEE Trans. Circuits Syst., 2010, 57, (4), pp. 773782.
    4. 4)
      • 15. Lee, J., Park, H., Chang, H.: ‘Low-power UWB LNA with common-gate and current-reuse techniques’, IET Microw. Antennas Propag., 2012, 6, (7), pp. 793799.
    5. 5)
      • 17. Jussila, J., Sivonen, P.: ‘A 1.2-V highly linear balanced noise-cancelling LNA in 0.13-μm CMOS’, IEEE J. Solid-State Circuits, 2008, 43, (3), pp. 579587.
    6. 6)
      • 12. Khurram, M., Rezaul Hasan, S.M.: ‘A 3–5 GHz current-reused Gm-boosted CG LNA for ultrawideband in 130 nm CMOS’, IEEE Trans. VLSI Syst., 2012, 20, (3), pp. 400409.
    7. 7)
      • 16. Liao, C.-F., Liu, S.-I.: ‘A broadband noise-canceling CMOS LNA for 3.1–10.6-GHz UWB receivers’, IEEE J. Solid-State Circuits, 2007, 42, (2), pp. 329339.
    8. 8)
      • 3. Kwon, I., Oh, D.: ‘Blocker cancelling LNA with integrated bandpass feedback stage’, Electron. Lett., 2012, 48, (14), pp. 850851.
    9. 9)
      • 1. Lin, J.Y., Chiou, H.K.: ‘Power-constrained third-order active notch filter applied in IR-LNA for UWB standards’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2011, 58, (1), pp. 1115.
    10. 10)
      • 18. Li, Z., Chen, L., Wang, Z., et al: ‘Low-noise and high-gain wideband LNA with gm-boosting technique’, Electron. Lett., 2013, 49, (18), pp. 11261128.
    11. 11)
      • 13. Wu, C.-Y., Lo, Y.-K., Chen, M.-C.: ‘A 3–10 GHz CMOS UWB low-noise amplifier with ESD protection circuits’, IEEE Microw. Wirel. Compon. Lett., 2009, 19, (11), pp. 737739.
    12. 12)
      • 9. El-Nozahi, M., Helmy, A.A., Sanchez-Sinencio, E., et al: ‘An inductor-less noise-cancelling broadband low noise amplifier with composite transistor pair in 90 nm CMOS technology’, IEEE J. Solid-State Circuits, 2011, 46, (5), pp. 11111122.
    13. 13)
      • 21. Li, N., Feng, W., Li, X.: ‘A CMOS 3–12-GHz ultrawideband low noise amplifier by dual-resonance network’, IEEE Microw. Wirel. Compon. Lett., 2017, 27, (4), pp. 383385.
    14. 14)
      • 5. Liang, C., Rao, P., Huang, T., et al: ‘Analysis and design of two low-power ultra-wideband CMOS low-noise amplifiers with out-band rejection’, IEEE Trans. Microw. Theory Tech., 2010, 58, (2), pp. 277286.
    15. 15)
      • 7. Rezaei, H., Abiri, E., Shahraki, H., et al: ‘Interference rejection in UWB LNA using front-end triode MOSFET’, Res. J. Appl. Sci. Eng. Technol., 2013, 6, (11), pp. 19701975.
    16. 16)
      • 2. Zhu, J., Krishnaswamy, H., Kinget, P.R.: ‘Field-programmable LNAs with interferer-reflecting loop for input linearity enhancement’, IEEE J. Solid-State Circuits, 2015, 50, (2), pp. 556571.
    17. 17)
      • 14. Park, B., Choi, S., Hong, S.: ‘A low-noise amplifier with tunable interference rejection for 3.1- to 10.6-GHz UWB systems’, IEEE Microw. Wirel. Compon. Lett., 2010, 20, (1), pp. 4042.
    18. 18)
      • 6. Vallese, A., Bevilacqua, A., Sandner, C., et al: ‘Analysis and design of an integrated notch filter for the rejection of interference in UWB system’, IEEE J. Solid-State Circuits, 2009, 44, (2), pp. 331343.
    19. 19)
      • 4. Gao, Y., Zheng, Y.J., Ooi, B.L.: ‘0.18 µm CMOS dual-band UWB LNA with interference rejection’, Electron. Lett., 2007, 43, (20), pp. 10961098.
    20. 20)
      • 8. Bruccoleri, F., Klumperink, E.A.M., Nauta, B.: ‘Wide-band CMOS low-noise amplifier exploiting thermal noise cancellation’, IEEE J. Solid-State Circuits, 2004, 39, (2), pp. 275282.
    21. 21)
      • 22. Wu, C.H., Lin, Y.S., Wang, C.: ‘A 3.1 10.6 GHz current-reused CMOS ultra-wideband low-noise amplifier using self-forward bodybias and forward combining techniques’, Microw. Opt. Technol. Lett., 2013, 55, (10), pp. 22962302.
    22. 22)
      • 20. Sapone, G., Palmisano, G.: ‘A 3–10-GHz low-power CMOS low-noise amplifier for ultra-wideband communication’, IEEE Trans. Microw. Theory Tech., 2011, 59, (3), pp. 678686.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0094
Loading

Related content

content/journals/10.1049/iet-cds.2017.0094
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading