access icon free Surface acoustic wave type electrode-area-weighted wavelet inverse-transform processors with phase compensation

The main purpose of this research is to investigate a novel implementation method for a surface acoustic wave type (SAWT) electrode-area-weighted (EAW) wavelet inverse-transform processor (WITP). The method of EAW is that the electrode areas of the input and output interdigital transducers (IDTs) are proportional to the envelope areas of the wavelet function (i.e. the two IDTs are identical). By this method, the SAWT EAW WITP is fabricated on X-112°Y LiTaO3 substrate material. In the study, the diffraction problem and phase difference as two key problems are presented and the solution to two problems are implemented.

Inspec keywords: surface acoustic wave signal processing; interdigital transducers; inverse transforms; wavelet transforms

Other keywords: substrate material; interdigital transducers; phase compensation; SAWT EAW WITP; phase difference; SAWT electrode-area-weighted wavelet inverse-transform processor; wavelet function; surface acoustic wave type EAW wavelet inverse-transform processor; IDT; diffraction problem

Subjects: Signal processing and detection; Integral transforms; Acoustic wave devices; Acoustic signal processing; Function theory, analysis

References

    1. 1)
      • 7. Zhang, C., Wang, C., Ahmad, M.O.: ‘A pipeline vlsi architecture for fast computation of the 2-d discrete wavelet transform’, IEEE Trans. Circuits Syst. I, Reg. Pap., 2012, 59, (8), pp. 17751785.
    2. 2)
      • 19. Lu, W.K., Zhu, C.C., Liu, Q.H., et al: ‘Implementing wavelet inverse-transform processor with surface acoustic wave device’, Ultrasonics, 2013, 53, (2), pp. 447454.
    3. 3)
      • 2. Zou, Y., Han, J., Xuan, S.Z., et al: ‘An energy-efficient design for ECG recording and R-peak detection based on wavelet transform’, IEEE Trans. Circuits Syst. II, Exp. Briefs, 2015, 62, (2), pp. 119123.
    4. 4)
      • 16. Lu, W.K., Zhu, C.C., Liu, J.H., et al: ‘Implementing wavelet transform with SAW elements’, Sci. China (Series E), 2003, 46, (6), pp. 627638.
    5. 5)
      • 5. Mohanty, B.K., Mahajan, A.: ‘Scheduling-scheme and parallel structure for multi-level lifting two-dimensional discrete wavelet transform without using frame-buffer’, IET Circuits Devices Syst.., 2013, 7, (6), pp. 319325.
    6. 6)
      • 15. Wen, C.B., Zhu, C.C., Ju, Y., et al: ‘Optimal frequency band design scheme of dyadic wavelet processor array using surface acoustic wave devices’, IEEE Trans. Ind. Electron., 2009, 56, (4), pp. 949955.
    7. 7)
      • 18. Lu, W.K., Zhu, C.C., Zhang, J.D., et al: ‘Study of small size wavelet transform processor and wavelet inverse-transform processor using saw devices’, Measurement, 2011, 44, (5), pp. 994999.
    8. 8)
      • 14. Wen, C.B., Zhu, C.C.: ‘Time synchronous dyadic wavelet processor array using surface acoustic wave device’, Smart Mater. Struc., 2006, 15, (4), pp. 939945.
    9. 9)
      • 1. Wang, Z., Balog, R.S.: ‘Arc fault and flash signal analysis in DC distribution systems using wavelet transformation’, IEEE Trans. Smart Grid, 2015, 6, (4), pp. 19551963.
    10. 10)
      • 13. Wen, C.B., Zhu, C.C., Ju, Y.F.: ‘Dual track architecture and time syschronous scheme for wavelet reconstruction processor using SAW device based on MSC’, Sensor. Actuat. A Phys., 2008, 147, (1), pp. 222228.
    11. 11)
      • 20. Mallat, S.: ‘A wavelet tour of signal processing’ (Academic Press, NY, 1998), pp. P79P80, ISBN: 978-0-12-374370-1.
    12. 12)
      • 3. Hamaneh, M.B., Chitravas, N., Kaiboriboon, K.: ‘Automated removal of EKG artifact from EEG data using independent component analysis and continuous wavelet transformation’, IEEE Trans. Biomed. Eng., 2014, 61, (6), pp. 16341641.
    13. 13)
      • 12. Wen, C.B., Zhu, C.C.: ‘A novel architecture of implementing wavelet transform and reconstruction processor with SAW device based on MSC’, Sensor. Actuat. A Phys., 2006, 126, (1), pp. 148153.
    14. 14)
      • 17. Lu, W.K., Zhu, C.C.: ‘Solving three key problems of wavelet transform processor using surface acoustic wave devices’, IEEE Trans. Ind. Electron., 2010, 57, (11), pp. 38013806.
    15. 15)
      • 6. Madishetty, S.K., Madanayake, A., Cintra, R.J., et al: ‘Precise VLSI architecture for AI based 1-D/ 2-D daub-6 wavelet filter banks with low adder-count’, IEEE Trans. Circuits Syst. I, Reg. Papers, 2014, 61, (7), pp. 19841993.
    16. 16)
      • 11. Lu, W.K., Zhu, C.C.: ‘A novel compensation method of insertion losses for wavelet inverse-transform processors using surface acoustic wave devices’, Rev. Sci. Instrum., 2011, 82, (11), pp. 115003.1115003.7.
    17. 17)
      • 8. Li, S., Wang, X., Su, X., et al: ‘Two-dimensional wavelet transform for reliability-guided phase unwrapping in optical fringe pattern analysis’, Appl. Opt., 2012, 51, (12), pp. 20262034.
    18. 18)
      • 21. Camplell, C.: ‘Surface acoustic wave devices and their signal processing applications’ (Academic Press. INC. HarcourtBrace Jovanovich, Publishers, Boston, 1989), pp. 118122, ISBN: 0-12-157345-1.
    19. 19)
      • 4. Desmouliers, C., Oruklu, E., Saniie, J.: ‘Discrete wavelet transform realisation using run-time reconfiguration of field programmable gate array (FPGA)s’, IET Circuits Devices Syst.., 2011, 5, (4), pp. 321328.
    20. 20)
      • 10. Lu, W.K., Zhu, C.C., Kuang, L., et al: ‘Solution to the influence of the MSSW propagating velocity on the bandwidths of the single-scale wavelet-transform processor using MSSW Device’, Ultrasonics, 2012, 52, (1), pp. 145150.
    21. 21)
      • 9. Parca, G., Teixeira, P., Teixeira, A.: ‘All-optical image processing and compression based on Haar wavelet transform’, Appl. Opt., 2013, 52, (12), pp. 29322939.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0092
Loading

Related content

content/journals/10.1049/iet-cds.2017.0092
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading