http://iet.metastore.ingenta.com
1887

Modelling and performance analysis of amorphous silicon solar cell using wide band gap nc-Si:H window layer

Modelling and performance analysis of amorphous silicon solar cell using wide band gap nc-Si:H window layer

For access to this article, please select a purchase option:

Buy article PDF
$19.95
(plus tax if applicable)
Buy Knowledge Pack
10 articles for $120.00
(plus taxes if applicable)

IET members benefit from discounts to all IET publications and free access to E&T Magazine. If you are an IET member, log in to your account and the discounts will automatically be applied.

Learn more about IET membership 

Recommend Title Publication to library

You must fill out fields marked with: *

Librarian details
Name:*
Email:*
Your details
Name:*
Email:*
Department:*
Why are you recommending this title?
Select reason:
 
 
 
 
 
IET Circuits, Devices & Systems — Recommend this title to your library

Thank you

Your recommendation has been sent to your librarian.

Poor charge transport mechanism and light-induced degradation effects are among the key factors leading to the degraded performance of single-junction amorphous silicon (a-Si:H) solar cells. Existent photovoltaic configurations, based on amorphous silicon carbide (a-SiC:H) window layer, have established efficiencies in the range of 7–10%. Limited performance of such devices has been addressed by replacing a-SiC:H with a wide band gap (∼2 eV) hydrogenated nano-crystalline silicon (nc-Si:H) layer that reportedly exhibits crystalline properties at small scale. Here, the proposed solar cell based on p-nc-Si:H/i-a-Si:H (buffer)/i-a-Si:H/n-a-Si:H configuration has been simulated with SILVACO TCAD by analysing window and intrinsic absorber layers thickness, as well as doping concentrations. Along with the engineering of p/i interface, in-depth evaluation of absorber defects parameters has also been undertaken in order to reduce the recombination rate. The simulated results of an optimised single-junction device demonstrated an open-circuit voltage (VOC) of 0.865 V, short-circuit current density (JSC) of 21.7 mA/cm2, Fill factor (FF) of 0.69 and power conversion efficiency of 12.93%, which is promising when compared with the solar cell already reported. The proposed structure will provide the platform for further development of low cost and efficient multijunction thin-film amorphous solar cell technology.

References

    1. 1)
      • 1. Taguchi, M., Yano, A., Tohoda, S., et al: ‘24.7% record efficiency HIT solar cell on thin silicon wafer’, IEEE J. Photovoltaics, 2014, 4, (1), pp. 9699.
    2. 2)
      • 2. Chopra, K.L., Paulson, P.D., Dutta, V.: ‘Thin-film solar cells: an overview’, Prog. Photovoltaics Res. Appl., 2004, 12, (2–3), pp. 6992.
    3. 3)
      • 3. Fraunhofer I.S.E.: ‘Photovoltaics report 2016’ (Fraunhofer I.S.E., 2016).
    4. 4)
      • 4. Stradins, P.: ‘Staebler-Wronski defects: creation efficiency, stability, and effect on a-Si:H solar cell degradation’. 35th IEEE Photovoltaic Specialists Conf. (PVSC), Honolulu, HI, USA, 2010, pp. 142145.
    5. 5)
      • 5. Fritzsche, H.: ‘Development in understanding and controlling the Staebler-Wronski effect in a-Si:H’, Annu. Rev. Mater. Res., 2001, 31, (1), pp. 4779.
    6. 6)
      • 6. Matsui, T., Bidiville, A., Maejima, K., et al: ‘High-efficiency amorphous silicon solar cells: impact of deposition rate on metastability’, Appl. Phys. Lett., 2015, 106, (5), p. 53901.
    7. 7)
      • 7. Soderstrom, T.: ‘Single and multi-junction thin film silicon solar cells for flexible photovoltaics’. PhD thesis, Universite de Neuchatel, 2009.
    8. 8)
      • 8. Il Park, S., Jae Baik, S., Im, J.-S., et al: ‘Towards a high efficiency amorphous silicon solar cell using molybdenum oxide as a window layer instead of conventional p-type amorphous silicon carbide’, Appl. Phys. Lett., 2011, 99, (6), p. 63504.
    9. 9)
      • 9. Banerjee, A., Su, T., Beglau, D., et al: ‘High-efficiency, multijunction nc-Si:H-based solar cells at high deposition rate’, IEEE J. Photovoltaics, 2012, 2, pp. 99103.
    10. 10)
      • 10. Banerjee, A., Liu, F.S., Beglau, D., et al: ‘12% efficiency on large-area, encapsulated, multijunction nc-Si:H-based solar cells’, IEEE J. Photovoltaics, 2012, 2, pp. 104108.
    11. 11)
      • 11. Vet, B., Zeman, M.: ‘Sensitivity study of model parameters for high-efficient amorphous-silicon solar cells’. Proc. 9th STW Annual Workshop on Semiconductor Advances for Future Electronics and Sensors, 2006, pp. 453457.
    12. 12)
      • 12. Gudovskikh, A.S., Abramov, A.S., Bobyl, A.V., et al: ‘Study of the properties of solar cells based on a-Si:H p-i-n structures by admittance spectroscopy’, Semiconductors, 2013, 47, (8), pp. 10901096.
    13. 13)
      • 13. Yunaz, I.A., Nagashima, H., Hamashita, D., et al: ‘Wide-gap a-Si1−xCx:H solar cells with high light-induced stability for multijunction structure applications’, Sol. Energy Mater. Sol. Cells, 2011, 95, (1), pp. 107110.
    14. 14)
      • 14. Kabir, M.I., Shahahmadi, S.A., Lim, V., et al: ‘Amorphous silicon single-junction thin-film solar cell exceeding 10% efficiency by design optimization’, Int. J. Photoenergy, 2012, 2012, p. 7.
    15. 15)
      • 15. Zhang, Y., Yu, C., Yang, M., et al: ‘Optimization of the window layer in large area silicon heterojunction solar cells’, RSC Adv., 2017, 7, (15), pp. 92589263.
    16. 16)
      • 16. Yuan, Y., Zhang, K., Wei, Z., et al: ‘Influence of p-layer on the performance of n-i-p μc-Si:H thin film solar cells’, Sci. China Phys. Mech. Astron., 2010, 53, (11), pp. 20422046.
    17. 17)
      • 17. Filonovich, S.A., Águas, H., Bernacka-Wojcik, I., et al: ‘Highly conductive p-type nanocrystalline silicon films deposited by RF-PECVD using silane and trimethylboron mixtures at high pressure’, Vacuum, 2009, 83, (10), pp. 12531256.
    18. 18)
      • 18. Tao, K., Zhang, D., Sun, Y., et al: ‘Boron doped hydrogenated nanocrystalline silicon thin films prepared by layer-by-layer technique and its application in n-i-p flexible amorphous silicon thin film solar cells’. 4th IEEE Int. Conf. on Nano/Micro Engineered and Molecular Systems NEMS, 2009, pp. 327330.
    19. 19)
      • 19. Li, Z., Zhang, X., Han, G.: ‘Electrical and optical properties of boron-doped nanocrystalline silicon films deposited by PECVD’, Phys. Status Solidi, 2010, 207, (1), pp. 144148.
    20. 20)
      • 20. Hu, Z., Liao, X., Diao, H., et al: ‘Hydrogenated p-type nanocrystalline silicon in amorphous silicon solar cells’, J. Non. Cryst. Solids, 2006, 352, (9–20), pp. 19001903.
    21. 21)
      • 21. Fathi, E., Vygranenko, Y., Vieira, M., et al: ‘Boron-doped nanocrystalline silicon thin films for solar cells’, Appl. Surf. Sci., 2011, 257, (21), pp. 89018905.
    22. 22)
      • 22. Lee, C.-H., Sazonov, A., Nathan, A.: ‘High-mobility nanocrystalline silicon thin-film transistors fabricated by plasma-enhanced chemical vapor deposition’, Appl. Phys. Lett., 2005, 86, (22), p. 222106.
    23. 23)
      • 23. Filonovich, S.A., Alpuim, P., Rebouta, L., et al: ‘Hydrogenated amorphous and nanocrystalline silicon solar cells deposited by HWCVD and RF-PECVD on plastic substrates at 150°C’, J. Non. Cryst. Solids, 2008, 354, (19–25), pp. 23762380.
    24. 24)
      • 24. Lenka, T.R.: ‘Effect of thin gate dielectrics on DC, radio frequency and linearity characteristics of lattice-matched AlInN/AlN/GaN metal–oxide–semiconductor high electron mobility transistor’, IET Circuits Devices Syst., 2016, 10, (5), pp. 423432(9).
    25. 25)
      • 25. Suria, B.S.N.F.M., Hussain, S., Mehmood, H., et al: ‘Nanocrystalline silicon (nc-Si: H) and amorphous silicon (a-Si: H) based thin-film multijunction solar cell’, Sains Malaysiana, 2014, 43, (6), pp. 895898.
    26. 26)
      • 26. Suntharalingam, V., Fortmann, C.M., Fonash, S.J., et al: ‘The p/i interface layer in amorphous silicon solar cells: a numerical modeling study’. Proc. 1994 IEEE 1st World Conf. on Photovoltaic Energy Conversion – WCPEC (A Joint Conf. of PVSC, PVSEC and PSEC), Waikoloa, HI, USA, 1994, vol. 1, pp. 618621.
    27. 27)
      • 27. Green, M.A.: ‘Self-consistent optical parameters of intrinsic silicon at 300 K including temperature coefficients’, Sol. Energy Mater. Sol. Cells, 2008, 92, (11), pp. 13051310.
    28. 28)
      • 28. Omer, B.M., Mohammed, F.A., Mahgoub, A.S.A.: ‘Simulation study on the open-circuit voltage of amorphous silicon p-i-n solar cells using AMPS-1D’, J. Nano Electron. Phys., 2014, 6, (1).
    29. 29)
      • 29. Dutta, U., Chatterjee, P.: ‘The open circuit voltage in amorphous silicon p-i-n solar cells and its relationship to material, device and dark diode parameters’, J. Appl. Phys., 2004, 96, (4), pp. 22612271.
    30. 30)
      • 30. Dosev, D., Iniguez, B., Marsal, L.F., et al: ‘Device simulations of nanocrystalline silicon thin-film transistors’, Solid. State. Electron., 2003, 47, (11), pp. 19171920.
    31. 31)
      • 31. Caughey, D.M., Thomas, R.E.: ‘Carrier mobilities in silicon empirically related to doping and field’, Proc. IEEE, 1967, 55, (12), pp. 21922193.
    32. 32)
      • 32. Farhan, M.S., Zalnezhad, E., Bushroa, A.R., et al: ‘Electrical and optical properties of indium-tin oxide (ITO) films by ion-assisted deposition (IAD) at room temperature’, Int. J. Precis. Eng. Manuf., 2013, 14, (8), pp. 14651469.
    33. 33)
      • 33. Vet, B., Zeman, M.: ‘Comparison of a-SiC:H and a-SiN:H as candidate materials for a p-i interface layer in a-Si:H p-i-n solar cells’, Energy Procedia, 2010, 2, (1), pp. 227234.
    34. 34)
      • 34. Nawaz, M.: ‘Computer analysis of thin-film amorphous silicon heterojunction solar cells’, J. Phys. D – Appl. Phys., 2011, 44, (14).
    35. 35)
      • 35. Singh, C.B., Bhattacharya, S., Ahmed, N., et al: ‘Effect of boron doping on optical and electrical properties of p-type a-Si:H films for thin film solar cells application’. 1st Int. Conf. on Non Conventional Energy (ICONCE), Kalyani, India, 2014, pp. 3842.
    36. 36)
      • 36. Munyeme, G., Zeman, M., Schropp, R.E.I., et al: ‘Performance analysis of a-Si:H p–i–n solar cells with and without a buffer layer at the p/i interface’, Phys. Status Solidi, 2004, 1, (9), pp. 22982303.
    37. 37)
      • 37. Al-Thani, H.A., Al-Shaibani, S.A., Al-Jaeedi, A.M., et al: ‘Recent progress of CIGS thin film R&D at NEWRC’. 43rd IEEE Photovoltaic Specialists Conf. (PVSC), Portland, OR, USA, 2016, pp. 14081411.
    38. 38)
      • 38. Luo, R., Liu, B., Yang, X., et al: ‘The large-area CdTe thin film for CdS/CdTe solar cell prepared by physical vapor deposition in medium pressure’, Appl. Surf. Sci., 2016, 360, pp. 744748.
    39. 39)
      • 39. Türck, J., Siol, S., Mayer, T., et al: ‘Cu2s as ohmic back contact for CdTe solar cells’, Thin Solid Films, 2015, 582, pp. 336339.
    40. 40)
      • 40. Lin, Y.-P., Hsieh, T.-E., Chen, Y.-C., et al: ‘Characteristics of Cu2ZnSn(SxSe1−x)4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment’, Sol. Energy Mater. Sol. Cells, 2017, 162, pp. 5561.
    41. 41)
      • 41. Sai, H., Matsui, T., Matsubara, K., et al: ‘11.0%-efficient thin-film microcrystalline silicon solar cells with honeycomb textured substrates’, IEEE J. Photovoltaics, 2014, 4, (6), pp. 13491353.
    42. 42)
      • 42. Kim, I., Haverinen, H.M., Li, J., et al: ‘Enhanced power conversion efficiency of p-i-n type organic solar cells by employing a p-layer of palladium phthalocyanine’, Appl. Phys. Lett., 2010, 97, (20), p. 203301.
    43. 43)
      • 43. Zi, W., Ren, X., Ren, X., et al: ‘Perovskite/germanium tandem: a potential high efficiency thin film solar cell design’, Opt. Commun., 2016, 380, pp. 15.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0072
Loading

Related content

content/journals/10.1049/iet-cds.2017.0072
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address