access icon free Efficient current injection device for harmonic reduction of three-phase controlled converters

Third harmonic current injection technique is one of the best options for harmonic reduction of three-phase controlled/uncontrolled converters. Injecting third harmonics current from dc-bus to the line current reduces its harmonic contents. Minimum THD for any firing angle of controlled converter is function in phase-angle and amplitude of harmonic injection current that can be controlled by single-phase controlled and boost converters, respectively. This scheme is used with three bidirectional switches as harmonic injection device to circulate the injection current to supply currents. This scheme is compared with the state-of-the-art system using zigzag transformer. A novel mathematical analysis for the proposed scheme and state-of-the-art scheme is introduced. The mathematical analysis introduces the optimum values for components on the harmonic injection path at minimum THD and the corresponding efficiency of each scheme. The two schemes under study have been simulated using PSIM program. Two lab prototypes for these two schemes have been implemented. Mathematical, simulation, and experimental results for these two schemes have been introduced, compared, and discussed. The results show the superiority of the proposed scheme.

Inspec keywords: harmonic distortion; switching convertors; mathematical analysis

Other keywords: three-phase controlled converters; PSIM program; harmonic injection path; boost converters; zigzag transformer; three-phase uncontrolled converters; THD; mathematical analysis; harmonic content reduction; firing angle; bidirectional switches; third harmonic current injection; line current; dc-bus; current injection device; single-phase controlled converters

Subjects: Power convertors and power supplies to apparatus; Mathematical analysis

References

    1. 1)
      • 2. Lee, K., Carnovale, D., Young, D., et al: ‘System harmonic interaction between DC and AC adjustable speed drives and cost effective mitigation’, IEEE Trans. Ind. Appl.., 2016, 52, (5), pp. 39393948.
    2. 2)
      • 3. Singh, B., Gurumoorthy, B., Madishetti, S.: ‘A polynomial current controller for a third-harmonic modulated power factor correction rectifier feeding a vector controlled induction motor drive’, Electr. Power Compon. Syst.., 2017, 45, (2), pp. 184197.
    3. 3)
      • 16. El-Tamaly, A.M., Enjeti, P.N., El-Tamaly, H.H.: ‘An improved approach to reduce harmonics in the utility interface of wind, photovoltaic and fuel cell power systems’. Fifteenth Annual IEEE Applied Power Electronics Conf. and Exposition. APEC 2000. vol. 2, 2000.
    4. 4)
      • 4. Hamad, M.S., Ahmed, K.H., Abdel-Khalik, A.S.: ‘Grid connected high power medium voltage wind energy conversion system with reduced line harmonics’. Renewable Energy Research and Applications (ICRERA), 2015 Int. Conf. on. IEEE, 2015.
    5. 5)
      • 21. Makoschitz, M., Hartmann, M., Ertl, H.: ‘Control concepts for hybrid rectifiers utilizing a flying converter cell active current injection unit’, IEEE Trans. Power Electron., 2016.
    6. 6)
      • 11. Kolar, W.J., Friedli, T.: ‘The essence of three-phase PFC rectifier systems—Part I’, IEEE Trans. Power Electron.., 2013, 28, (1), pp. 176198.
    7. 7)
      • 1. Mohamadian, S., Tessarolo, A., Castellan, S., et al: ‘Steady-state simulation of LCI-Fed synchronous motor drives through a computationally efficient algebraic method’, IEEE Trans. Power Electron., 2017, 32, (1), pp. 452470.
    8. 8)
      • 25. Toumi, A., Hachicha, M.R., Ghariani, M., et al: ‘power factor correction rectifier with a variable frequency voltage source in vehicular application’, Intell. Control Autom. 2014, 2014, 5, (1), pp. 111.
    9. 9)
      • 14. Eltamaly, A.M.: ‘A novel harmonic reduction technique for controlled converter by third harmonic current injection’. Control System, Computing and Engineering (ICCSCE), 2012 IEEE Int. Conf. on, 2012.
    10. 10)
      • 9. IEEE Std 519-2014, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, IEEE-SA Standards Board, STD98587, 2014.
    11. 11)
      • 18. Eltamaly, A.M.: ‘A modified harmonics reduction technique for a three-phase controlled converter’, IEEE Trans. Ind. Electron.., 2008, 55, (3), pp. 11901197.
    12. 12)
      • 19. Eltamaly, A.M.: ‘A novel harmonic reduction technique for controlled converter by third harmonic current injection’, Electr. Power Syst. Res. ., 2012, 91, pp. 104112.
    13. 13)
      • 15. Darijevic, M., Janković, M., Pejović, P., et al: ‘Three-phase rectifiers with suboptimal current injection and improved efficiency’, IET Power Electron., 2014, 7, (4), pp. 795804.
    14. 14)
      • 6. Chuangpishit, S., Tabesh, A., Moradi-Shahrbabak, Z., et al: ‘Topology design for collector systems of offshore wind farms with pure DC power systems’, IEEE Trans. Ind. Electron.., 2014, 61, (1), pp. 320328.
    15. 15)
      • 23. Mielczarski, W., Lawrance, W.B., Nowacki, R., et al: ‘Harmonic current reduction in three-phase bridge-rectifier circuits using controlled current injection’, IEEE Trans. Ind. Electron.., 1997, 44, (5), pp. 604611.
    16. 16)
      • 10. Schwanz, D., Bollen, M., Larsson, A.: ‘A review of solutions for harmonic mitigation’. 2016 17th IEEE Int. Conf. on Harmonics and Quality of Power (ICHQP), 2016.
    17. 17)
      • 22. Itoh, J.-I., Ashida, I.: ‘A novel three-phase PFC rectifier using a harmonic current injection method’, IEEE Trans. Power Electron.., 2008, 23, (2), pp. 715722.
    18. 18)
      • 7. Rajaei, A., Mohamadian, M., Varjani, A.Y.: ‘Vienna-rectifier-based direct torque control of PMSG for wind energy application’, IEEE Trans. Ind. Electron.., 2013, 60, (7), pp. 29192929.
    19. 19)
      • 17. Bozovic, P., Pejovic, P.: ‘A novel three-phase full bridge thyristor rectifier based on the controlled third harmonic current injection’. Power Tech Conf. Proc., 2003, Bologna. Vol1, 2003.
    20. 20)
      • 12. Friedli, T., Hartmann, M., Kolar, J.W.: ‘The essence of three-phase PFC rectifier systems—Part II’, IEEE Trans. Power Electron.., 2014, 29, (2), pp. 543560.
    21. 21)
      • 20. Kanaan, H.Y., Al-Haddad, K.: ‘Three-phase current-injection rectifiers: competitive topologies for power factor correction’, IEEE Ind. Electron. Mag., 2012, 6, (3), pp. 2440.
    22. 22)
      • 8. I. E. C. Standard.: ‘61000-3-2: 2004, Limits for harmonic current emissions’ (International Electromechanical Commission, Geneva, 2004).
    23. 23)
      • 24. Chandrasekar, T., Rabi, J., Kannan, A., et al: ‘A study and review of current injection techniques’, Int. J. Technol. Eng. Sci., 2013, 1, (6), pp. 100810013.
    24. 24)
      • 5. Yaramasu, V., Wu, B.: ‘Predictive control of a three-level boost converter and an NPC inverter for high-power PMSG-based medium voltage wind energy conversion systems’, IEEE Trans. Power Electron.., 2014, 29, (10), pp. 53085322.
    25. 25)
      • 13. de Freitas, T.R.S., Menegáz, P.J.M., Simonetti, D.S.L.: ‘Rectifier topologies for permanent magnet synchronous generator on wind energy conversion systems: A review’, Renew. Sustain. Energy Rev., 2016, 54, pp. 13341344.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0039
Loading

Related content

content/journals/10.1049/iet-cds.2017.0039
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading