Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon free Hybrid AlGaN/GaN high-electron mobility transistor: design and simulation

In this study, the authors propose a novel structure of high-electron mobility transistor (HEMT) with significantly improved performance. The novelty of the proposed HEMT is the realisation of two parallel induced electron layers under the source and drain electrode, one in the form of two-dimensional (2D) electron gas (2DEG) and the other in the form of charge plasma electron gas (CPEG). The proposed device is a hetrostructure GaN/AlGaN device, therefore, a 2DEG gets created. However, two metal electrodes at the source and drain terminals are used in the proposed device, which induce CPEG in an undoped AlGaN film under the source and drain electrode. Therefore, the proposed HEMT device is hybrid and has a combination of CPEG and the 2DEG. A two-dimensional (2D) calibrated simulation study of the proposed device has revealed that its hybrid nature has improved its performance significantly in comparison to the conventional HEMT device having 2DEG only. It has been observed that the ON current has enhanced by 115%, transconductance (g m) by 168%, cutoff frequency (f T) by 71% and maximum oscillation frequency (f max) by 65% in comparison to the conventional HEMT.

References

    1. 1)
      • 3. Mishra, U.K., Parikh, P., Wu, Y.-F.: ‘AlGaN/GaN HEMTs—An overview of device operation and application’, Proc. IEEE, 2002, 90, (11), pp. 10221031.
    2. 2)
      • 5. Karmalkar, S.: ‘Enhancement of breakdown voltage in AlGaN/GaN high electron mobility transistors using a field plate’, IEEE Trans. Electron Devices, 2001, 48, pp. 15151521.
    3. 3)
      • 19. Kao, K.C.: ‘Dielectric phenomena in solids’ (Elsevier Academic Press, 2004), p. 327.
    4. 4)
      • 16. Tang, C., Shi, J.: ‘Influence of acceptor-like traps in the buffer on current collapse and leakage of E-mode AlGaN/GaN MISHFETs’, Semicond. Sci. Technol., 2013, 28, (11).
    5. 5)
      • 7. Jena, K., Swain, R., Lenka, T.R.: ‘Impact of a drain field plate on the breakdown characteristics of AlInN/GaN MOSHEMT’, J. Korean Phys. Soc., 2015, 67, (9), pp. 15921596.
    6. 6)
      • 4. Ambacher, O., Smart, J., Shealy, J.R., et al: ‘Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures’, J. Appl. Phys., 1999, 85, pp. 32223233.
    7. 7)
      • 22. Bashir, F., Loan, S.A., Rafat, M., et al: ‘A high-performance source engineered charge plasma-based Schottky MOSFET on SOI’, IEEE Trans. Electron Devices, 2015, 62, (10), pp. 33573364.
    8. 8)
      • 12. Nadda, K., Kumar, M.J.: ‘Vertical Bipolar charge plasma transistor with buried metal layer’, Nature, 2015, 5, Article number. 7860, pp. 16.
    9. 9)
      • 23. Suemitsu, T., Shiojima, K., Makimura, T., et al: ‘Intrinsic transit delay and effective electron velocity of AlGaN/GaN high electron mobility transistors’, Jpn. J. Appl. Phys., 2005, 44, (6), pp. 211213.
    10. 10)
      • 6. Adak, S., Swain, S.K., Singh, A., et al: ‘Study of HfAlO/AlGaN/GaN MOS-HEMT with source field plate structure for improved breakdown voltage’, Physica E, 2014, 64, pp. 152157.
    11. 11)
      • 2. Macfarlane, D.J.: ‘Design and fabrication of AlGaN/GaN HEMTs with high breakdown voltages’. PhD thesis submitted to the University of Glasgow, 2014.
    12. 12)
      • 20. Sahu, C., Singh, J.: ‘Charge-plasma based process variation immune junctionless transistor’, IEEE Electron Device Lett., 2014, 35, (3), pp. 411413, art. No. 6712062.
    13. 13)
      • 27. Manku, T.: ‘Microwave CMOS-device physics and design’, IEEE J. Solid-State Circuits, 1999, 34, (3), pp. 277285.
    14. 14)
      • 14. Ye, P.D., Yang, B., Ng, K.K., et al: ‘GaN metal-oxide-semiconductor high-electron-mobility-transistor with atomic layer deposited Al2O3 as gate dielectric’, Appl. Phys. Lett., 2005, 86, p. 063501.
    15. 15)
      • 13. Singh, P., Pandey, S.: ‘Work Function engineered charge plasma diode for enhanced performance’, J. Phys. D: Appl. Phys., 2015, 48, (49).
    16. 16)
      • 10. Hueting, R.J.E., Rajasekharan, B., Salm, C., et al: ‘The charge plasma P-N diode’, IEEE Electron Device Lett., 2008, 29, (12), pp. 13671369.
    17. 17)
      • 18. van Wouden Bergh, T.: ‘Charge injection into organic semiconductors’. PhD Thesis, Rijksuniversiteit Groningen, 2005, ISBN: 90-367-2277-2.
    18. 18)
      • 8. Kumar, M.J., Sharma, S.: ‘GaAs tunnel diode with electrostatically doped n-region: Proposal and Analysis’, IEEE Trans. Electron Devices, 2015, 62, (10), pp. 34453448.
    19. 19)
      • 17. Tress, W.: ‘Organic solar cells: theory, experiment and device simulation’, Springer Series Mater. Sci., 2014, pp. 157158.
    20. 20)
      • 9. Loan, S.A., Verma, S., Alamoud, A. R.M.: ‘High performance charge plasma based normally-off GaN MOSFET’, IET Electron. Lett., 2016, 52, (8), pp. 656658.
    21. 21)
      • 25. Mohankumar, N., Syamal, B., Sarkar, C.K.: ‘Investigation of novel attributes of single halo dual-material double gate MOSFETs for analog/RF applications’, Microelectron. Reliab., 2009, 49, pp. 14911497.
    22. 22)
      • 21. Kumar, M.J., Nadda, K.: ‘Bipolar charge-plasma transistor: a novel three terminal device’, IEEE Trans. Electron Devices, 2012, 59, pp. 962967.
    23. 23)
      • 11. Rajasekharan, B., Hueting, R.J.E., Salm, C., et al: ‘Fabrication and characterization of the charge-plasma diode’, IEEE Electron Device Lett., 2010, 31, (6), pp. 528530.
    24. 24)
      • 15. ATLAS Device Simulation Software Manual, Silvaco Inc., Santa Clara, CA, USA, 2012.
    25. 25)
      • 1. Chow, T.P., Tyagi, R.: ‘Wide bandgap compound semiconductors for superior high-voltage unipolar power devices’, IEEE Trans. Electron Devices, 1994, 41, (8), pp. 14811483.
    26. 26)
      • 24. Patil, G.C., Qureshi, S.: ‘A novel δ-doped partially insulated dopant-segregated Schottky barrier SOI MOSFET for analog/RF applications’, Semicond. Sci. Technol., 2011, 26.
    27. 27)
      • 26. Lovelace, D., Costa, J., Camilleri, N.: ‘Extracting small-signal model parameters of silicon MOSFET transistors’. IEEE MTT-S Int. Microwave Symposium Digest, 1994, vol. 2, pp. 865868.
http://iet.metastore.ingenta.com/content/journals/10.1049/iet-cds.2017.0025
Loading

Related content

content/journals/10.1049/iet-cds.2017.0025
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address